# B.TECH. IN AEROSPACE ENGINEERING (BTAE) 

Term-End Examination<br>June, 2011

## BAS-015 : Aerodynamics - II

Time: 3 hours
Maximum Marks : 70
Note: Answer any seven question. All questions carry equal marks. Use of calculator is permitted.

1. (a) Derive an expression Connecting Area and 5 Velocity Variations with Mach number for a one-dimensional compressible flow.
(b) An airplane is flying at 2.5 Mach at an 5 altitude where the pressure and temperature are respectively, 0.2 atm and $-50^{\circ} \mathrm{C}$. Calculate the pressure and temperature at the leading edge of the wing.
2. (a) Derive a general expression for the speed of sound in a compressible gas.
(b) Air at $30^{\circ} \mathrm{C}$ and 1 atm is drawn through a C-D nozzle which discharges in to a large vaccum tank. Determine the Conditions upstream and down stream of a normal shock which is located at the nozzle exit. The nozzle throat and exit areas are $0.025 \mathrm{~m}^{2}$ and $0.0724 \mathrm{~m}^{2}$, respectively.
3. (a) Explain the term chocking in a CD nozzle and the flow conditions responsible for it.
(b) Air flows at a mass flow rate of $9.0 \mathrm{~kg} / \mathrm{s}$ isothermally at 300 K through a straight rough duct of constant Cross-Sectional area $1.5 \times 10^{-3} \mathrm{~m}^{2}$. At one end A the pressure is 6.5 bar and at the other end $B$ the pressure is 8.5 bar. Determine (i) velocities $\mathrm{U}_{\mathrm{A}}$ and $\mathrm{U}_{\mathrm{B}}$ (ii) the force acting on the duct wall.
4. (a) Derive a relation Connecting flow turning angle, shock angle and free stream Mach number for Oblique Shock Waves.
(b) An incident shock wave with wave angle $=35$ degree implinges on a straight wall. If the upstream flow properties are $\mathrm{M}_{1}=3, \mathrm{P}_{1}=1 \mathrm{~atm}, \mathrm{~T}_{1}=300 \mathrm{~K}$, Calculate the reflected shock wave angle with respect to the wall.
5. (a) What is an expansion Hodograph ? What is it's use in supersonic aerodynamics ?
(b) A Supersonic stream of air at $\mathrm{M}=2.5$, $\mathrm{T}=300 \mathrm{~K}$ and $\mathrm{P}=1.5 \mathrm{~atm}$ passes through a sudden convex and then a sudden concave corner of turning angle $15^{\circ}$ each. Determine Mach number and pressure of flow downstream of the Concave Corner.
6. Explain the procedure to be followed for the design of a supersonic nozzle using method of characteristics.
7. (a) Write a short note on Laminar Flow air foils. 4
(b) Explain the swinging of a cricket ball with 6 the help of a neat sketch.
8. (a) Explain in brief the boundary layer 3 Separation. How it is different for laminar and turbulent flows?
(b) A thin plate of length 0.5 m and width 1 m 7 is moving in air along it's length at a speed of $100 \mathrm{~m} / \mathrm{s}$. Calculate the total skin friction drag on the plate assuming sea level conditions.
9. (a) State Biot-Savart law. 2
(b) Determine the expression for the Vortex drag for elliptical loading and find the condition for the maximum vortex drag.
10. (a) Explain in brief the superiorities of 'Lifting Surface theory' for predicting lift distribution on a wing with an arbitary planform. Make use of sketches and other representation in this regard.
(b) Write short note on down wash? 2
