- B.TECH. IN AEROSPACE ENGINEERING (BTAE)

Term-End Examination
June, 2011

BAS-013 : PROPULSION - I

Time : 3 hours
Maximum Marks : 70
Note: All questions carry equal marks. Answer any seven questions. Use of calculator is permitted.

1. (a) Derive an expression for air standard efficiency of Otto cycle.
(b) Bore and stroke of an engine working on Otto cycle are 20 cm and 30 cm respectively. If clearance volume is $0.001025 \mathrm{~m}^{3}$, calculate air standard efficiency.
2. Write short notes on any two of the following : $\mathbf{5 \times 2} \mathbf{= 1 0}$
(a) Turboprop propulsion
(b) Knocking
(c) Steam cooling of IC engine.
3. Give reasons for any two of the following: $\mathbf{5 \times 2 = 1 0}$
(a) Increase in cut-off ratio reduces air standard efficiency of Diesel cycle.
(b) 2 - stroke engines have lower thermal efficiency than 4 - stroke engines.
(c) Torque and mean effective pressure donot depend strongly on speed of an engine but bhp depends on speed.
4. Each cylinder of a 4-cylinder 4-stroke engine has a bore and stroke of 100 mm and 150 mm respectively. The venturi diameter at throat is 25 mm . If engine runs at 2000 rpm and volumetric efficiency is 70%, determine suction pressure at throat. Take air density as $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and neglect compressibility of air. Take mass discharge coefficient as 0.8 .
5. An engine is designed to deliver 120 bhp with mechanical efficiency of 80%. Due to some lubrication change, frictional horse power reduces by 5 unit and out put remains same. If indicated thermal efficiency is same, calculate
(a) New mechanical efficiency
(b) New brake.

Specific fuel consumption, if original brake Specific fuel consumption is 200 gm/bhp-hr.
6. Explain one-dimensional heat conduction through of heat conduction?
7. What are various methods for measurement of 10 fhp? Explain each method.
8. What are adverse effects of altitude on performance 10 of an aircraft engine? How are these effects nullified?
9. (a) Explain the law governing heat transfer by radiation.
$5+5=10$
(b) Calculate emmisive power of a black body maintained at :
(i) $0^{\circ} \mathrm{C}$ and
(ii) $6000^{\circ} \mathrm{C}$

