B.TECH. (AEROSPACE ENGINEERING) PROGRAMME (BTAE)

Term-End Examination

June, 2011
BAS-009 : INTRODUCTION TO AERONAUTICS
Time : 3 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any six questions from Question no. 2 to Question no. 10. Use of calculator is permitted.

1. Fill in the blanks:
(a) Troposphere extends from earth surface to 1 \ldots km. altitude.
(b) Minimum drag occurs when parasite drag 1
\qquad
(c) Circulation in a flow means that the flow 1 system could be resolved into a \qquad . portion and \qquad portion.
(d) Kutta transformation is used to study 1
\qquad while Zhukovsky extended this to produce section with \qquad and
(e) The induced velocity in the downwards 1 direction called as \qquad .
(f) \qquad speed condition in which an 1 aircraft flies close to the ground.
(g) Flight at minimum power condition is not possible because speed does not go below the \qquad .
(h) Compressibility of fluid is the reciprocal of
\qquad .
(i) Load factor is ratio of L / W of speed, corresponding to \qquad .
(j) The point on the air foil at which moment is independent of the angle attack is called
\qquad .
2. (a) If the sea level pressure and temperature are 5 $100500 \mathrm{~N} / \mathrm{m}^{2}$ and $20^{\circ} \mathrm{C}$ respectively, while at some unknown attitude the pressure is $71800 \mathrm{~N} / \mathrm{m}^{2}$ and the temperature is $-10^{\circ} \mathrm{C}$. Is the atmosphere between these attitude stable or unstable. Estimate the height at which the second pair of readings were taken. Assume a linear variation of temperature with height.
(b) What is atmosphere? Derive an expression how pressure depends upon temperature in troposphere.
3. (a) Describe trailing vortex system. 5
(b) How does down wash influence on the 5 tailplane ?
4. (a) Describe air foil nomenclature.
(b) Define the following terms :
(i) Tapered wing.
(ii) Profile drag.
(iii) Thrust specific fuel consumption.
(iv) Combat range.
(v) Cruise propeller.
5. Explain with appropriate sketches, why twist is incorporated in propeller.
6. (a) Explain, why flaps are lowered during take 5 off and landing of aircraft.
(b) Describe the function of spoilers.

5
7. (a) Describe the usefulness of a slot and flap 5 combination on a lifting wing with appropriate $C_{L}-\alpha$ curve.
(b) An airplane weighs $160,000 \mathrm{~N}$ has a wing 5 area of $42 \mathrm{~m}^{2}$. The aircraft drag equation is $C_{D}=0.014+.05 \mathrm{C}_{\mathrm{L}}^{2}$; Calculate maximum R/C at sea level and flight speed and angle of climb, if the engine thrust is 27000 N at all speeds at sea level.
8. (a) An airplane has a wing loading of $2000 \mathrm{~N} / \mathrm{m}^{2}$. Its drag polar equation is given by $C_{D}=0.018+0.056 C_{L}^{2}$. Determine the velocity for which this airplane has (L/D) max .
(b) Write short notes on the following:
(i) Semi-monocoque
(ii) Twisted wing
9. An airplane weighing 13250 N is powered by delivering $230 \mathrm{~h} . \mathrm{p}$. at all altitudes. If specific fuel consumption is $0.2 \mathrm{~kg} / \mathrm{h} . \mathrm{p} .-\mathrm{hr}$. then parameters are wing $\operatorname{span}=b=11 \mathrm{~m} ; S=16.2 \mathrm{~m}^{2}$, $C_{D O}=0.025, \quad \mathrm{e}=0.8$, propeller efficiency $n_{p}=0.85$. If this airplane is required to fly non stop over distance of 1850 kms determine the fuel load to be carried for this case.
10. (a) What are the factors affecting 'Thrust' ?
(b) What are the forces acting on an airplane 5 in flight?

