B.Sc. (NAUTICAL SCIENCE)

Term-End Examination

June, 2011

BNA-011 : APPLIED MATHEMATICS

Time : 2 hours \quad Maximum Marks : 70
Note: Attempt any five questions. Use of calculator is permitted.

1. (a) Find the angle between two vectors \vec{a} and 7
$\overrightarrow{\mathrm{b}}$ having the same length $\sqrt{2}$ and their scalar products is -1 .
(b) Evaluate $\int_{0}^{1} \frac{\mathrm{~d} x}{1+x^{2}}$ using Simpson's $\frac{1}{3}$ rule $\quad 7$
taking $\mathrm{h}=\frac{1}{4}$
2. (a) A die is thrown 6 times. If "getting an odd 7 number" is a "success", what is the probability of :
(i) 5 successes
(ii) at least 5 successes
(b) Obtain the line of regression of y on x for the data given below:

$$
\begin{array}{lccccc}
x: & 1.53 & 1.78 & 2.60 & 2.95 & 3.42 \\
y: & 33.50 & 36.30 & 40.00 & 45.80 & 53.50
\end{array}
$$

3. (a) If $y=3 \cos (\log x)+4 \sin (\log x)$ show that 7 $x^{2} y_{2}+x y_{1}+y=0$.
(b) If $y=\left(\tan ^{-1} x\right)^{2}$ show that
$\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2$.
4. (a) Evaluate $\int \sqrt{7 x-10-x^{2}} \mathrm{~d} x$.
(b) Find the area of the region included between the parabolas $y^{2}=4 \mathrm{a} x$ and $x^{2}=4 \mathrm{a} y$, where $a>0$.
5. (a) In a spherical. triangle ABC, angle $A=124^{\circ} 21^{\prime}$, side $A B=41^{\circ} 30^{\prime}$ and side $\mathrm{AC}=51^{\circ} 30^{\prime}$. Calculate side BC using haversine formula.
(b) In a spherical right angled triangle angle $\mathrm{B}=90^{\circ}$, angle $\mathrm{A}=43^{\circ} 30^{\prime}$ and side $a=41^{\circ} 45^{\prime}$. Calculate sides b and c.
6. (a) Find the equation of the circle passing through the point $(2,4)$ and centre at the intersection of the lines $x-y=4$ and $2 x+3 y=-7$.
(b) Find the coordinates of the vertices, the foci, the eccentricity and the equations of the directrices of the hyperbola $16 y^{2}-4 x^{2}=1$.
