BAR-024

BACHELOR OF ARCHITECTURE

0 7 1	Term-End Examination June, 2011 BAR-024 : THEORY OF STRUCTURE - III					
00						
Time	: 3 h	ours		Maximum Marks : 70		
Note	e: Ç q is	Questic uestior 5 perm	on No. 1 is c is from the rea itted.	c ompulsory . maining quest	Attempt tions. Use oj	any four f calculator
1.	Cho give (a)	ose th n opti Rate	ose the most appropriate option from the n options in questions (a) to (g). 7x2=14 Rate of change of bending moment is equal			
	(b)	(i) (ii) (iii) (iv) The curv flexu (i)	shear force deflection slope rate of load relationsh vature R, b tral rigidity $R = \frac{M}{E I}$	e nip betwee bending mo E I is given l (ii)	en radius oment M by: $M = \frac{EI}{R}$ MI	of and
		(iii)	$EI = \frac{R}{M}$	(iv)	$E = \frac{M I}{R}$	

- (c) A beam of uniform strength has at every cross section same :
 - (i) bending moment
 - (ii) bending stress
 - (iii) deflection
 - (iv) stiffness
- (d) A beam of rectangular cross-section is 100 mm wide and 200 mm deep. If the section is subjected to a shear force of 20 kN, then the maximum shear stress in the section is :
 - (i) 1.0 N/mm^2
 - (ii) 1.125 N/mm^2
 - (iii) 1.33 N/mm^2
 - (iv) 1.5 N/mm^2
- (e) A portion of a beam between two sections is said to be in pure bending when there is :
 - (i) constant bending moment and zero shear force
 - (ii) constant shear force and zero bending moment
 - (iii) constant bending moment and constant shear force
 - (iv) none of the above
- (f) Ultimate compressive load in a column depends upon :
 - (i) the material of the column
 - (ii) the effective length of the column
 - (iii) cross-sectional shape and dimensions of the column
 - (iv) all of the above

BAR-024

2

(g) Effective length of a chimney of 20 m height is taken as :

- (iii) 20.28 m (iv) 40 m
- A truss is loaded as shown in figure 1. 14
 Determine the forces in all the members of the truss.

A simply supported beam of 10 m span is loaded 14 as shown in Figure - 2. Draw the bending moment and shear force diagrams, indicating principal values.

Figure - 2

4. The aluminium and steel pipes shown in 14 Figure - 3 are fastened to rigid supports at one of their ends to a rigid plate c at the other ends. Derive expressions for axial stresses in the two pipes. Hence find the numerical values if P = 30 kN, $A_{\alpha} = 4000 \text{ mm}^2$, $A_s = 400 \text{ mm}^2$, $E_a = 0.7 \times 10^5 \text{ N/mm}^2$ and $E_s = 2 \times 10^5 \text{ N/mm}^2$.

- Derive the expression for maximum deflection for 14 a simply supported beam of length 'L' having a point load 'W' at the mid point of the span.
- What are the assumptions of Euler's theory ? 14 Discuss the limitations of Euler's formula.
- 7. Write short note on *any two* of the following : 2x7=14
 - (a) Difference between Method of Joints and Method of Sections for analysis of a truss.
 - (b) Variation of shear stress across circular and rectangular cross section.
 - (c) Uses and advantages of composite sections.

BAR-024

4