No. of Printed Pages : 4

MCSE-004

MCA (Revised) Term-End Examination June, 2011

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours

02012

Maximum Marks : 100

- **Note :** Question No. 1 is compulsory. Attempt any three from the rest. Use of calculator is allowed.
- 1. (a) Define Absolute Error, Relative Error and 3+5 Percentage Error. Show that

$$\frac{(a-b)}{c} \neq \frac{a}{c} - \frac{b}{c}, \text{ where }:$$

a = 0.41, b = 0.36 and c = 0.70

- (b) Find the real root of the equation 8 $x^3-2x-5=0$ using Bisection Method. Upto four iterations only.
- (c) Solve by Jacobi's method the following 8 system of linear equations. $2x_1 - x_2 + x_3 = -1$ $x_1 + 2x_2 - x_3 = 6$ $x_1 - x_2 + 2x_3 = -3$
 - Upto 3 iterations only

MCSE-004

 (d) Write down the polynomial of lowest degree which satisfies the following set of numbers, using the forward difference polynomial.

x	0	1	2	3	4	5	6	7
f(x)	0	7	26	63	124	125	342	511

8

8

(e) Evaluate

 $I = \int_{0}^{1} \frac{1}{1+x} dx$, correct to 3 decimal places by (i) Simpson's rule

$$(h = 0.125)$$

2. (a) Explain the cases where Newton's method 4 fail.

(b) Find a real root of the equation 8

 $f(x) = x^3 - x - 1 = 0$

Up to four iterations only.

(c) Use Gauss - Seidel Method to solve the equation :

$$x + y - z = 0$$

- x + 3y = 2
x - 2z = -3
Initial solution vector is [0.8 0.8 2.1]^T.
Upto 3 - iterations only.

MCSE-004

 (a) The population of a town in the decennial census was as given below Estimate the population for the year 1895.

Year: x	1891	1901	1911	1921	1931
Population : y (in Thousands)	46	66	81	93	101

(b) Evaluate $\int_{1}^{6} [2 + \sin(2\sqrt{x}) dx] using 8$

simpson's rule with 5 points.

- (c) Explain Euler's Method for solving an **4** ordinary differential equation.
- 4. (a) Solve the initial value problem $\frac{dy}{dx} = 1 + y^2$ 10 where y=0 when x=0 using Fourth order classical Runge-Kutta Method. Also find y(0.2), y(0.4)
 - (b) Evaluate the integral I = $\int_{1}^{2} \frac{2x dx}{1+x^4}$ using 10

Gauss - Legendre 1 - point, 2 - point and 3 - point quadrature rules. Compare with the exact solution.

5. (a) A box contains 6 red, 4 white and 5 black 8 balls. A person draws 4 balls from the box at random. Find the probability that among the balls drawn there is at least one ball of each color.

MCSE-004

P.T.O.

8

3

(b) Find the most likely price in Bombay corresponding to the price of Rs. 70 at Calcutta from the following

	Calcutta	Bombay
Av. Price	65	67
Standard Deviation	2.5	3.5

Corelation Co - efficient between the prices of commodities in the two cities is 0.8.

(c) Ten coins are thrown simultaneously. Find 4
the probability of getting at least seven heads.