No. of Printed Pages : 3

MCS-033

MCA (Revised)

Term-End Examination June, 2011

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours

02892

Maximum Marks : 50

- **Note**: Question **no. 1** is **compulsory**. Attempt **any three** from the rest.
- (a) Find the order and degree of the following 6 recurrences relations.
 Determine whether they are homogeneous or non homogeneous :
 - (i) $a_n = a_{n-1} + a_{n-2} + \dots + a_0$

(ii)
$$a_n = na_{n-2} + 2^n$$

- (b) A graph G is said to be self complementary if it is isomorphic to its complement G.
 Show that for a self complementary (p−q) graph G, either P or (P−1) is divisible by 4.
- (c) Define minimum vertex degree of G (δ (G)) 3 and maximum vertex degree of G (Δ (G)).

4

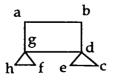
1

- (d) Solve the following recurrence relation : 3 $4a_r - 5a_{r-1} = 0, r \ge 1, a_o = 1.$
- (e) Find the generating function for the **2** sequence 0^2 , 1^2 , 2^2 , 3^2 ,
- (f) Define bipartite graph. Also give an 2 example of it.

5

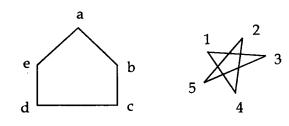
2. (a) Show that if $G_1, G_2, ..., G_n$ are bipartite, 5

then
$$\bigcup_{i=1}^{n} G$$
 is bipartite.


(b) Solve the recurrence $a_n = a_{n-1} + 2a_{n-1}, n \ge 2$ with $a_0 = 0, a_1 = 1$.

3. (a) Solve
$$a_r = a_{r-1} + r 2^r$$
, given $a_o = 1$.
(b) Solve $a_r = 2a_{r-1} + 1$ with $a_1 = 7$, for $r > 1$, by 5
substitution method

4. (a) Use generating function to solve 3
$$a_n - 9a_{n-1} + 20a_{n-2} = 0$$
, $a_0 = -3$, $a_1 = -10$.


(b) Solve the recurrence **4**
$$a_{r+4} - 4a_{r+3} + 6a_{r+2} - 4a_{r+1} + 4a_r = 0.$$

(c) Find Euler's path in the graph given below : 3

MCS-033

- 5. (a) Can a simple graph exist with 15 vertices, 3 with each of degree five ? Justify your answer.
 - (b) Are the following graphs are isomorphic ? 4If Yes or No Justify.

3

(c) Show that K_5 is not planar.

MCS-033

3