MCA (Revised)

Term-End Examination June, 2011

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three from the rest.

1. (a) Find the order and degree of the following 6 recurrences relations.
Determine whether they are homogeneous or non homogeneous :
(i) $a_{n}=a_{n-1}+a_{n-2}+\ldots \ldots+a_{o}$
(ii) $a_{n}=n a_{n-2}+2^{n}$
(b) A graph G is said to be self complementary
if it is isomorphic to its complement $\overline{\mathrm{G}}$.
Show that for a self complementary ($p-q$)
graph G, either P or $(P-1)$ is divisible by 4 .
(c) Define minimum vertex degree of $G(\delta(\mathrm{G}))$ and maximum vertex degree of $G(\Delta(\mathrm{G}))$.
(d) Solve the following recurrence relation : $4 a_{r}-5 a_{r-1}=0, r \geqslant 1, a_{o}=1$.
(e) Find the generating function for the sequence $0^{2}, 1^{2}, 2^{2}, 3^{2}, \ldots .$.
(f) Define bipartite graph. Also give an 2 example of it.
2. (a) Show that if $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{n}}$ are bipartite,
then $\bigcup_{i=1}^{n} G$ is bipartite.
(b) Solve the recurrence

$$
a_{n}=a_{n-1}+2 a_{n-1}, n \geqslant 2
$$

with $a_{o}=0, a_{1}=1$.
3. (a) Solve $a_{r}=a_{r-1}+r 2^{r}$, given $a_{o}=1$.
(b) Solve $\mathrm{a}_{\mathrm{r}}=2 \mathrm{a}_{\mathrm{r}-1}+1$ with $\mathrm{a}_{1}=7$, for $\mathrm{r}>1$, by substitution method.
4. (a) Use generating function to solve
$a_{n}-9 a_{n-1}+20 a_{n-2}=0, a_{o}=-3, a_{1}=-10$.
(b) Solve the recurrence

$$
a_{r+4}-4 a_{r+3}+6 a_{r+2}-4 a_{r+1}+4 a_{r}=0 .
$$

(c) Find Euler's path in the graph given below :

5. (a) Can a simple graph exist with 15 vertices, with each of degree five? Justify your answer.
(b) Are the following graphs are isomorphic? If Yes or No Justify.

(c) Show that K_{5} is not planar.

3

