MCA (Revised)

Term-End Examination
June, 2011

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) It is required to sit 5 men and 4 women in a 3 row so that the women occupy the even places. How many such arrangements are possible?
(b) A question paper of discrete mathematics 4 has two sections of five questions each. In how many ways can an examinee answer six questions taking at least two questions from each group ?
(c) If A and B are sets, prove that.
$A \cup B=(A-B) \cup B$
(d) Find $f^{-1}(x)$ where $f(x)=\frac{x+4}{x-3}$
(e) Show that; $\sim(P V(\sim P \wedge Q)) \equiv \sim P \wedge \sim Q$ 3 using logical equivalent formulas.
(f) What is pigeon hole principle ? Using this principle show that in any group of 36 people, we can always find 6 people who were born on the same day of week.
2. (a) Express the Boolean expression in three 4 variables $(x+y+z)\left(x y+x^{\prime} z\right)^{\prime}$ in DNF
(b) Use mathematical induction method, prove 3 that :
$1+2+3+\ldots+n=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
(c) Prove that a relation R in the set Z of integers 3 defined by ' $a R b \Leftrightarrow a-b$ is even' is an equivalence relation.
3. (a) Prove that $(P \Rightarrow q) V r \equiv(P V r) \Rightarrow(q V r)$
(b) If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a function such that 4 $f(x)=3 x+5$
prove that f is one - one onto. Also find the inverse of f.
(c) Determine the number of integer solutions to the equation $x_{1}+x_{2}+x_{3}+x_{4}=7$ where $x i \geq 0 \quad \forall i=1,2,3,4$
4. (a) Two dice, one red and one white are rolled. 4 What is the probability that the white die turns up a smaller number than the red die?
(b) What is duality principle? Find dual of 3 $(A \cup B) \wedge C$
(c) Verify that $p \wedge q \wedge \sim p$ is a contradiction 3 and $\mathrm{p} \rightarrow \mathrm{q} \Leftrightarrow \sim \mathrm{p} \vee \mathrm{q}$ is a tautology.
5. (a) Show that $\sqrt{3}$ is irrational 4
(b) Construct the logic circuit and obtain the 3 logic table for the expression $x_{1} \vee\left(x_{2}^{\prime} \wedge x_{3}^{\prime}\right)$
(c) How many numbers are there between 100 3 and 1000 such that 7 is in the unit's place?
