ADCA / MCA (II Yr.)

$\stackrel{\infty}{m}$ $\stackrel{n}{n}$

Term-End Examination

June, 2011

CS-07 : DISCRETE MATHEMATICS

Time : 3 hours
Maximum Marks : 75
Note : Question No. 1 is compulsory. Attempt any three from the rest.

1. (a) Write the following statements in predicate form.
(i) Rakesh is a man.
(ii) All that glitters is gold.
(iii) Some women are beautiful.
(b) Obtain principal conjuctive form of 4 $(\neg \mathrm{P} \rightarrow \mathrm{R}) \wedge(\mathrm{Q} \rightleftarrows \mathrm{P})$.
(c) What is a planar graph ? Is the following 3 graph planer? Support your answer by proper argument.

(d) Define the following terms with suitable examples :
(i) Spanning Tree
(ii) Eulerian Path
(iii) Connected Graph
(e) Let $\mathrm{A}=\{1,2,3,4,5\}$ be a set and R be relation 5
A such that $(a, b) \in R$ iff $a<b$
(i) Write R.
(ii) Is R symmetric ? Give argument.
(iii) Is R reflexive? Give argument.
(iv) Find R^{2}.
(v) Find $\overline{\mathrm{R}}$.
(f) Write short note on fuzzy relations.

5
(g) Solve the following boolean function using 3
karnaugh map.

F (A, B, C) $=\Sigma 0,1,4,5,6$
(h) Compute 49-58 using 8 bit ${ }^{\prime}$ 'S complement 2 arithmetic.
2. (a) Express $P \wedge Q P \vee Q u s i n g \neg$ and \rightarrow only. 4
(b) Describe the output of following gating 3 network.

(c) Explain the following mechanism of inference
(i) Modus Ponens
(ii) Modus tollens
(d) Prove the following equivalence
(i) $\sim \forall_{x} \mathrm{E}(x) \equiv \exists_{x} \sim \mathrm{E}(x)$
(ii) $\sim \exists_{x} \mathrm{P}(x) \equiv \forall_{x} \sim \mathrm{P}(x)$
by giving suitable argument
3. (a) Write the matrix representation of following 5 graph G (adjacency matrix) and prove that graph G is connected.

(b) Write a short note on Konisberg's 7 bridges problem.
(c) Find the shortest path length from A to Z in following graph using Dijkastra's algorithm.

4. (a) Make Venn diagrams for the following.
(i) $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})$
(ii) $\overline{\mathrm{A}}$
(iii) $\mathrm{A}-\mathrm{B}$
(b) Let $\mathrm{A}=\{1,2,3,4,5\}$ and R be a relation on AXA such $(a, b) \in R$ iff $a \bmod 3=b \bmod 3$. Write R. Show that R is an equivalence relation. Also write A/R.
(c) Define poset. Let I be the set of positive integer and 1 be the divisibility operation. Prove that $(I, 1)$ is a poset.
(d) Is $\mathrm{F}(x)=\sqrt{X}$ a function. Give argument to 2 support your answer.
5. (a) Which of the following is not a lattice and 3 why?

(i)

(ii)

(iii)
(b) Make D (40) All positive divisors of 40 lattice. 3
(c) Design the circuit for full adder.
(d) Represent the following circuit using a gating network.

