BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination
June, 2011

CS-73 : THEORY OF COMPUTER SCIENCE

Time : 3 hours
Maximum Marks : 75
Note: Question no. 1 is compulsory. Attempt any three from the rest.

1. (a) What do you understand by the following ? Explain each with an appropriate example :
(i) Regular expression $2+2+2+2=8$
(ii) Context Free Grammar
(iii) NFA
(iv) Pumping Lemma
(b) Build a Finite Automata that accepts only 4 those words that have an even no of sub strings $a b$. $(\Sigma=\{a, b\})$
(c) For $\Sigma=\{a, b\} \quad 2$

Give a regular expression that has all strings that end in a double letter
(d) Find a grammar for the language of odd 2 palindromes over $\{a, b\}$.
(e) Design a TM that recognises the strings of even length over $\{a, b\}$.
(f) Explain the practical and geometrical 4 interpretation of the following growth rate notations :

O (big oh) ; Θ (theta) : o (little oh or small oh)
(g) Show that

$$
\mathrm{n}^{2}+3 \log \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

(h) State any three decision problem which are unsolvable.
2. (a) Tabulate chomsky hierarchy of grammar 5 with examples.
(b) Convert the following regular expression 5 into a finite Automata.
$(a+b)^{*}(a a+b b)(a+b)^{*}$
(c) Derive a finite Automata from the following 5 NFA

3. (a) Show that L described as follows is not regular $L=\left\{w w: w \Sigma\{a, b\}^{*}\right\}$
(b) Describe the operation of Turing machine 5 which uses a two way infinite tape.
(c) What are the applications of finite 4 Automata ? Explain with an appropriate examples.
4. (a) Build a PDA for the language described as 5 $\left\{w w^{R}\right.$: w $\left.\Sigma\{a, b\}^{*}\right\}$
(b) Show that the language
$\left\{a^{n^{2}} \mid n \geqslant 1\right\}$ is not context free.
(c) Show that the function is primitive recursive 5
$f(n, m)=\left\{\begin{array}{cc}n-m & \text { if } n \geqslant m \\ 0 & \text { otherwise }\end{array}\right.$
5. (a) Show that the state entry problem is 4
undecidable
(b) If $f(n)=2 n^{2}+3 n^{2}+1 \quad 6$
then show that

$$
f(n)=\mathrm{w}(n)
$$

and also

$$
f(n)=\mathrm{w}\left(n^{2}\right)
$$

(c) Show that K-colorability problem is NP. 5

