No. of Printed Pages : 3

01932

CS-73

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2011

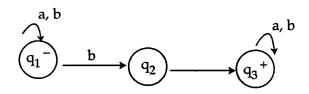
CS-73 : THEORY OF COMPUTER SCIENCE

Time	e : 3 ho	rs Maximum Marks : 75
Note		estion no. 1 is compulsory . Attempt any three from rest.
1.	(a)	What do you understand by the following ? Explain each with an appropriate example : (i) Regular expression (ii) Context Free Grammar (iii) NFA (iv) Pumping Lemma
	(b)	Build a Finite Automata that accepts only 4 those words that have an even no of sub strings ab. ($\Sigma = \{a, b\}$)
	(c) (d)	For $\Sigma = \{a, b\}$ Give a regular expression that has all strings that end in a double letter Find a grammar for the language of odd 2
	(~)	palindromes over {a, b}.

٠

- (e) Design a TM that recognises the strings of 2 even length over {a, b}.
- (f) Explain the practical and geometrical 4 interpretation of the following growth rate notations :

O (big oh); Θ (theta): o (little oh or small oh)


3

$$n^2 + 3\log n = O(n^2)$$

- (h) State any three decision problem which are 5 unsolvable.
- (a) Tabulate chomsky hierarchy of grammar 5 with examples.
 - (b) Convert the following regular expression 5 into a finite Automata.

 $(a+b)^*$ (aa+bb) (a+b)*

(c) Derive a finite Automata from the following 5 NFA

3.	(a)	Show that L described as follows is not regular $L = \{ww : w \Sigma \{a, b\}^*\}$	6
	(b)	Describe the operation of Turing machine which uses a two way infinite tape.	5
	(c)	What are the applications of finite Automata ? Explain with an appropriate examples.	4
4.	(a)	Build a PDA for the language described as $\{ww^R : w \Sigma \{a, b\}^*\}$	5
	(b)	Show that the language	5
		$\{a^{n^2} n \ge 1\}$ is not context free.	
	(c)	Show that the function is primitive recursive	5
		$f(n, m) = \begin{cases} n-m & \text{if } n \ge m \\ 0 & \text{otherwise} \end{cases}$	
5.	(a)	Show that the state entry problem is undecidable	4
	(b)	If $f(n) = 2n^2 + 3n^2 + 1$	6
		then show that	
		f(n) = w(n)	
		and also	
		$f(n) = w(n^2)$	
	(c)	Show that K-colorability problem is NP.	5

-

•