BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2011

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt only three questions from the rest. In total, you have to answer four questions. Use of Calculator is permitted.

1. (a) Explain the loss of significant digits in 5 subtraction of two nearly equal numbers.
(b) Prove that $\mu^{2}=1+\frac{1}{4} \delta^{2}$
(c) Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ 5
using Simpson's $\frac{1}{3^{r d}}$ rule taking $h=\frac{1}{4}$.
(d) Find a root of the equation 5 $x^{3}-x-11=0$ correct to 4 decimals using bisection method.
(e) Find a root of the equation
$x^{3}-3 x^{2}+7 x-8=0$
correct to three decimals using Newton Rapson's method.
(f) Solve the equation
$3 x^{3}-4 x^{2}+x+88=0$,
one root being $2+\sqrt{7} i$
2. (a) Using Newton's forward interpolation 5 formula, find y at $x=8$ from the following table.

$x:$	0	5	10	15	20	25
$y:$	7	11	14	18	24	32

(b) Find a root of the equation
$x^{3}-4 x-9=0$,
correct to three decimals using Regula Falsi method.
(c) Solve the equation
$x^{3}-7 x^{2}+36=0$,
given that one root is double of another.
3. (a) Find the cube root of 41, using Newton 5 Raphson's method.
(b) Apply Runge - Kutta fourth order method, to find an approximate value of y when $x=0.2$, given that
$\frac{d y}{d x}=x+y$
and $y=1$, when $x=0$.
(c) Use Lagrange's interpolation formula to find 5 y when $x=5$ from the following data :

$x:$	0	1	3	8
$y:$	1	3	13	123

4. (a) Given the values

5

$x:$	5	7	11	13	17
$f(x):$	150	392	1452	2366	5202

evaluate $f(9)$ using Newton's divided difference formula.
(b) Find a root of the equation 5
$x^{3}-5 x-11=0$, correct to three decimals using iteration method.
(c) Solve the following system of linear 5 equations
$2 x+y+z=4$
$x+2 y+z=4$
$x+y+2 z=4$
by Jacobi's iteration method.
5. (a) Solve the following equations by Gauss Seidel method.
$2 x+y+6 z=9$
$8 x+3 y+2 z=13$
$x+5 y+z=7$.
(b) Solve the system of equations
$3 x+y-z=3$
$2 x-8 y+z=-5$
$x-2 y+9 z=8$
using Gauss - elimination method.
(c) The velocity $v(\mathrm{~km} / \mathrm{min})$ of a moped which
starts from rest is given at fixed intervals of time t (min) as follows:

$t:$	2	4	6	8	10	12	14	16	18	20
$v:$	10	18	25	29	32	20	11	5	2	0

Estimate approximately the distance covered in 20 minutes.

