BACHELOR IN COMPUTER APPLICATIONS
 Term-End Examination

June, 2011

CS-601 : DIFFERENTIAL AND INTEGRAL CALCULUS WITH APPLICATIONS

Time : 2 hours
Maximum Marks : 75
Note: Question no. 1 is compulsory. Attempt any three more questions from question No. 2 to 6. Use of calculator is permitted.

1. (a) Select the correct answer from the four given 6 alternatives for each part given below :
(i) If $f(x)=\frac{x^{2}-1}{x+1}$, then domain of the function is :
(A) R, the set of real numbers.
(B) $[-1 ; \infty]$
(C) All real numbers except - 1
(D) none of these
(ii) If $y=x \tan ^{-1} x$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$
(A) $x^{2} \tan ^{-1} x+\frac{x^{2}}{\sqrt{1+x^{2}}}$
(B) $\tan ^{-1} x+\frac{x}{1+x^{2}}$
(C) $\tan ^{-1} x-\frac{x}{1+x^{2}}$
(D) $\left(\tan ^{-1} x\right)^{2}$.
(iii) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{e}^{x}}{x}\right)=$
(A) $\frac{\mathrm{e}^{x}}{x^{2}}$
(B) $\frac{\mathrm{e}^{x}}{x^{2}}+\frac{1}{x} \mathrm{e}^{x}$
(C) $\frac{1}{x} \mathrm{e}^{x}-\frac{\mathrm{e}^{x}}{x^{2}}$
(D) $\mathrm{e}^{x} \log x$
(iv) $\int \operatorname{cosec}(3 x+4) \cot (3 x+4) \mathrm{d} x=$
(A) $\frac{1}{2} \operatorname{cosec}(3 x+4) \cot (3 x+4)+C$
(B) $\frac{1}{3} \operatorname{cosec}(3 x+4)+C$
(C) $-\frac{1}{3} \operatorname{cosec}(3 x+4)+\mathrm{C}$
(D) $\log \cos (3 x+4) \mathrm{C}$
(v) If $f(x)=(x-1) \mathrm{e}^{x}+1$ and $x \geqslant 0$ then $f(x)$ is :
(A) increasing function
(B) decreasing function
(C) Strictly increasing function
(D) Strictly decreasing function
(vi) $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin 4 x}{x}$ is :
(A) 0
(B) ∞
(C) 1
(D) 4
(b) Fill in the blanks :
(i) $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=$ \qquad
(ii) $\operatorname{Lim}_{x \rightarrow 0} \frac{x^{2}}{\sin x^{2}}=$
(iii) $\int 2 \sin \frac{x}{2} \cos \frac{x}{2} \mathrm{~d} x=$ \qquad .
(iv) The minimum value of the function $f(x)=(2 x-1)^{2}+3$ is \qquad .
(v) If $y=\cos x^{2}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ \qquad .
(vi) The equation of the normal to the curve $y=x^{3}$ at $(1,1)$ is \qquad .
(c) For each of the following functions, find whether the function is monotonically increasing or monotonically decreasing or neither, on given interval.
(i) $f(x)=2 x^{3}-8$ on $[0,3]$
(ii) $f(x)=2 \sin x$ on $\left[0, \frac{\pi}{2}\right]$
(d) If $x=\tan \left(l_{\mathrm{n}} y\right)$, prove that

$$
\left(1+x^{2}\right) y_{1}=y .
$$

Using Leibnitz theorem, find y_{n+1}.
(e) The perimeter of a rectangle is 100 m . Find 3 the length of its sides when the area is maximum.
(f) Find the value of ' b ' for which the function 3
$f(x)=\left\{\begin{array}{l}x^{2}+1 \text { when } x<2 \\ b x+\frac{2}{x} \text { when } x \geqslant 2\end{array}\right.$
is continuous at $x=2$.
(g) Evaluate ;

$$
\int\left(\log x^{3}+9 \sin ^{3} x\right)\left[27 \sin ^{2} x \cos x+\frac{3}{\mathrm{x}}\right] \mathrm{d} x
$$

(h) Evaluate $\operatorname{Lim}_{x \rightarrow \infty} \frac{11 x^{2}-6 x+8}{9 x^{2}-5 x+5}$
2. (a) For what value of k is the function ; $3+4+4+4$

$$
f(x)= \begin{cases}2 x+1, & x \leq 2 \\ x+\mathrm{k}, & x>2\end{cases}
$$

is continuous at $x=2$
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=\sin x \sin 2 x \sin 3 x$
(c) Evaluate; $\int x^{3} \log 2 x \mathrm{~d} x$
(d) Prove that $\int_{0}^{\pi / 2} \frac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} \mathrm{~d} x=\frac{\pi}{4}$
3. (a) Find the $n^{\text {th }}$ derivative of the following function $f(x)=(a x+b)^{m}$ where a and b are real numbers and m is a positive integer.
(b) Can Rolle's Theorem be applied to the following function?
$y=\sin ^{2} x$ on the interval $[0, \pi]$. Find ' C ' such that f ' $(C)=0$, in case Rolle's theorem can be applied.
(c) Integrate any one of the following :
(i) $\int x^{3} \mathrm{e}^{2 x} \mathrm{~d} x$
(ii) $\int \frac{1}{\mathrm{e}^{x}+1} \mathrm{~d} x$
4. (a) Evaluate $\int_{0}^{4} \mathrm{e}^{2 x} \mathrm{~d} x \quad 5+5+5$
(b) Compute the area lying between the parabola $y=4 x-x^{2}$ and the line $y=x$.
(c) If $z=\mathrm{e}^{\mathrm{a} x+\mathrm{b} y} f(\mathrm{a} x-\mathrm{b} y)$, prove that

$$
\mathrm{b} \frac{\partial z}{\partial x}+\mathrm{a} \frac{\partial z}{\partial y}=2 \mathrm{abz}
$$

5. (a) Solve any one of the following :
(i) $x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=1+x+y+x y$
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}+y^{2}}{x y}$
(b) For what value of ' k ' is the following function continuous at $x=1$?

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-1}{x-1}, & x \neq 1 \\
\mathrm{k} & x=1
\end{array}\right.
$$

(c) If $\mathbf{u}=f(x-y, y-z, z-x)$, prove that

$$
\frac{\partial \mathrm{u}}{\partial x}+\frac{\partial \mathrm{u}}{\partial y}+\frac{\partial \mathrm{u}}{\partial z}=0
$$

6. (a) Calculate the radius and the height of a right circular cylinder of maximum volume which can be cut from a sphere of radius R.
(b) Solve any one of the following: $5+5+5$
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{2 x-3 y}+4 x^{2} \mathrm{e}^{-3 y}$
(ii) $(x y+x) \mathrm{d} y-(x y+y) \mathrm{d} x=0$
(c) A river is 80 ft wide. The depth in feet at a distance $x \mathrm{ft}$, from one bank is given by the following table

$x:$	0	10	20	30	40	50	60	70	80
$\mathrm{~d}:$	0	4	7	9	12	15	14	8	3

Using Simpson's $\frac{1}{3^{r d}}$ rule, find approximately the area of the cross-section.

