BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

June, 2011

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time: 3 hours

Maximum Marks : 75

Note: Question No. 1 is compulsory. Attempt any three questions from questions No. 2 to 6 . Use of calculator is permitted.

1. (a) If $\frac{x}{y}=\frac{3}{4}$, find $\frac{5 x-3 y}{7 x+2 y}$.
$15 \times 3=45$
(b) If α and β are the roots of the equation $x^{2}-7 x+7=0$, then

$$
\text { find }\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) \alpha \beta
$$

(c) Simplify $\frac{\sqrt{5}-1}{\sqrt{5}+1}$
(d) Find the middle term in the expression of $\left(3 x-\frac{x^{3}}{6}\right)^{8}$
(e) Find the term independent of x in the
expression of $\left(6 x+\frac{1}{x}\right)^{12}$
(f) Determine the equation of a line passing through the point $(2,3)$ and with slope 3/4.
(g) Determine the equation of a circle if its centre is $(4,6)$ and radius is 6 .
(h) Find the positive value of k for which the given equation has real and equal roots.

$$
4 x^{2}-3 \mathrm{k} x+1=0
$$

(i) Find the number of terms in an AP in which the first term $=5$, the common difference $=3$ and the last term $=83$.
(j) Find the positive value of k for which the distance between the points $A(k,-5)$ and $B(2,7)$ is 13 units.
(k) Find the equation of a line passing through the point $(3,4)$ and sum of the intercepts of the axes is 14 .
(l) Compute the inverse of the matrix

$$
A=\left[\begin{array}{cc}
4 & 3 \\
-7 & 1
\end{array}\right]
$$

(m) Evaluate $\int_{1}^{2}\left(x^{2}-1\right) \mathrm{d} x$
(n) Evaluate $\operatorname{Lim}_{x \rightarrow-3} \frac{x^{2}-9}{x+3}$
(o) Express the z in the form $x+i y z=\frac{3-i}{3+i}$
2. (a) Find the co-ordinates of the centre and radius of the circle $3+3+4$

$$
x^{2}+y^{2}+6 x+8 y-56=0
$$

(b) Find the equation of the straight line that is perpendicular to the line $7 x+2 y=9$ and passes through the point $(-1,-3)$.
(c) Evaluate any one of the following :
(i)

$$
\operatorname{Lim}_{x \rightarrow 1} \frac{x^{3}+x^{2}-x-1}{x^{2}+2 x-8}
$$

(ii) $\operatorname{Lim}_{x \rightarrow 1}\left(\frac{x-1}{x^{2}-1}\right)$
3. (a) Express $\frac{2+i}{(3-i)(1+2 i)}$ in the form of $a+i b$ where a and b are real.
(b) For what value of ' k ' is the following function continuous at $x=1$?

$$
f(x)=\left\{\begin{array}{cc}
\frac{x^{2}-1}{x-1}, & x \neq 1 \\
\mathrm{k} & x=1
\end{array}\right.
$$

(c) Solve the following equations by Cramer's rule :

$$
\begin{aligned}
& 3 x-y+z=6 \\
& 4 x-y+2 z=7 \\
& 2 x-y+z=4
\end{aligned}
$$

4. (a) Using the properties of the determinants show that $x=4$ is a solution of the following.
$\left|\begin{array}{ccc}15-2 x & 11 & 10 \\ 11-3 x & 17 & 16 \\ 7-x & 14 & 13\end{array}\right|=0$
(b) Evaluate $\int \sin (2 x+3) \mathrm{d} x$
(c) Find the equation of the tangent and normal to the curve $y^{2}=3 x^{2}+1$ at the point $(1,2)$.
5. (a) Find $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{x+3}{x-3}\right)$
$3+3+4$
(b) Use trapoziodal rule to find the value of the following integral with the given value of x.

$$
\int_{1}^{2} x^{2} \mathrm{~d} x, \mathrm{n}=4
$$

(c) Find the complex conjugate of $(3+4 i)^{2}$.
6. (a) Determine two positive numbers whose sum is 15 and the sum of whose squares is mini.

$$
3+3+4
$$

(b) Evaluate $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
(c) Find the equation of the ellipse, whose length of the major axis is 20 and foci are $(0,+5)$.

