BACHELOR OF SCIENCE (B.Sc.)

1. Attempt any three parts :
(a) For two vectors \vec{A} and \vec{B}, if $|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$, find the angle between \vec{A} and \vec{B}.
(b) Show that the derivative of vector function $\vec{v}(t)$ of constant magnitude is either the null vector or is perpendicular to it.
(c) Show that the following vector field is irrotational :
$\vec{F}=\frac{-K \vec{r}}{r^{2}}$
(d) Define polar and axial vectors show that axial vectors do not change sign under a parity transformation.
(e) Using Gauss's divergence theorem, evaluate $\oint_{S} \vec{F} \cdot d \vec{S}$ over a spherical surface of radius R where $\overrightarrow{\boldsymbol{F}}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{\boldsymbol{k}}$.
2. The position vector of a particle is given by
$\overrightarrow{\mathbf{r}} \quad(t)=5 t \quad \hat{\mathbf{e}}_{\rho}+\sin t \hat{\mathbf{e}}_{z}$. Calculate its acceleration

OR
Determine the work done by a force field \vec{F} in moving particle once around a circle C in the $x-y$ plane if the centre of the circle is at the origin and

$$
\begin{aligned}
& \text { its radius is } 3 \text {, where } \vec{F} \text { is given by } \\
& \vec{F}=(2 x-y) \hat{i}+(x+y) \hat{j}
\end{aligned}
$$

3. A factory manufactures watches. The probability of a watch being defective is 0.02 . If 40 watches are selected at random, what is the probability that no more than three are defective ?

OR
Three coins are tossed in a game. Let E be the event that a tail appears on the first coin and F be the event that a head appears on the third throw. Are E and F independent ?
4. Obtain the expression for the standard deviation of the poisson distribution.

OR

From the center of steel bar, supported at its ends, a mass M is suspended. The depressions $y(\mu \mathrm{~m})$ is measured for various masses as follows :

$M(\mathrm{~kg})$	0	1	2	3	4
$y(\mu \mathrm{~m})$	1500	1350	1100	900	650

Calculate the best value of the slope

विज्ञान स्नातक (बी.एस सी.)
सत्रांत परीक्षा
जून, 2010
भौतिक विज्ञान
पी.एच.ई.-4 : भौतिकी में गणितीय विधियाँ-I
समय : $1 \frac{1}{2}$ घण्टे
अधिकतम अंक : 25
बी.एस सी. परीक्षा
पी.एच.ई-4 : भौतिकी में गणितीय विधियाँ-I
एवं
पी.एच.ई-5 : भौतिकी में गणितीय विधियाँ-II
निर्देश :

1. जो छात्र पी.एच्च.ई.-4 और पी.एच.ई.-5 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्नपत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
2. जो छात्र पी.एच.ई.-4 या पी.एच.ई.-5 किसी एक के लिए पंजीकृत है, अपने उसी प्रश्नपत्र के उत्तर, उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।
नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। प्रतीकों के अपने सामान्य अर्थ हैं। आप लॉग सारणी या अप्रोग्रामीय कैल्कुलेटर का प्रयोग कर सकते हैं।
3. कोई तीन भाग करें।
(a) दो सदिशों \vec{A} और \vec{B} के लिए, यदि
$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$ हो, तो \vec{A} और \vec{B} के बीच के कोण का मान ज्ञात करें।
(b) सिद्ध करें कि अचर परिमाण वाले सदिश फलन $\vec{v}(\mathrm{t})$ का अवकलन या तो शून्य सदिश होता है या उस पर लंब होता है।
(c) सिद्ध करें कि निम्नलिखित सदिश क्षेत्र अघूर्णी है।

$$
\vec{F}=\frac{-K \vec{r}}{r^{2}}
$$

(d) ध्रुविय और अक्षीय सदिशों को परिभाषित करें। सिद्ध करें कि समता रूपांतरण के अधीन अक्षीय सदिशों का चिह्न नहीं बदलता।
(e) गाउस डाइवर्जेन्स प्रमेय का प्रयोग करते हुए, त्रिज्या R वाले एक गोलीय पृष्ठ पर $\oint_{s} \vec{F} \cdot d \vec{S}$ का मान ज्ञात करें, जहाँ $\vec{F}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$.
2. एक कण का स्थिति सदिश इस प्रकार है :
$\overrightarrow{\mathbf{r}}(t)=5 \mathrm{t} \hat{\mathbf{e}}_{p}+\sin t \hat{\mathbf{e}}_{z}$
कण के त्वरण का मान प्रास करें।
अथवा
PHE-4

बल क्षेत्र \vec{F} द्वारा एक कण को $x y$ समतल में स्थित एक वृत्त C में
एक बार घुमाने में किए गए कार्य का मान ज्ञात करें। दिया गया है कि C
का केंद्र मूल बिंदु पर है और उस की त्रिज्या 3 है; और \vec{F} निम्नलिखित है :
$\overrightarrow{\boldsymbol{F}}=(2 x-y) \hat{i}+(x+y) \hat{j}$
3. एक कारखाने में घड़ियों का निर्माण होता है। किसी घड़ी की खराब होने की प्रायिकता 0.02 है। यादृच्छया चुनी गई 40 घडियों में तीन से ज़्यादा घड़ियों के खराब न होने की प्रायिकता क्या है ? अथवा
एक खेल में तीन सिक्के उछाले जाते हैं। यदि, E पहले सिक्के के पट्ट पड़ने की घटना है और F तीसरे उछाल पर चित्त पड़ने की घटना है, तो क्या E और F स्वतंत्र हैं ?
4. प्वासों बंटन के मानक विचलन व्यंजक प्राप्त करें।

अथवा

अपने सिरों पर आलंबित इस्पात के धड़ के केन्द्र से एक द्रव्यमान
M लटकाया गया है। भिन्न द्रव्यमानों के लिए मापे गए दंड के अवनमन $y(\mu \mathrm{~m})$ निम्नलिखित है :

$M(\mathrm{~kg})$	0	1	2	3	4
$y(\mu \mathrm{~m})$	1500	1350	1100	900	650

प्रवणता का श्रेष्ठतम मान प्राप्त करें।

