BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
June, 2010

PHE-11 : MODERN PHYSICS

Time : 2 hours
Maximum Marks : 50
Note: Attempt all questions. The marks for each question are indicated against it. You may use log tables and calculators. The values of the physical constants have been given at the end.

1. Answer any five parts :
$2 \times 5=10$
(a) Explain why the effects of time dilation are not felt in everyday Phenomena?
(b) An electron has a de Broglei wavelength of 1nm. Calculate its kinetic energy.
(c) If A and B are Hermitian operators, show that $i[\mathrm{~A}, \mathrm{~B}]$ is Hermitian.
(d) A radio active element has a half life of 5 yrs. What fraction of the element would survive after 20 yrs ?
(e) Determine the electronic configuration for Sr^{38}.
(f) Explain with reasons whether the following reactions are possible or not :
(i) $\pi^{+}+p \rightarrow \lambda+K^{\circ}$
(ii) $\lambda \rightarrow \pi^{+}+\pi^{-}$
(g) What is the probabilistic interpretation of the wave function?
2. Attempt any two parts : $5 \times 2=10$
(a) Show that two events which are simultaneous in S, but are separated by Δx in space are separated in both space and time in S^{\prime}. It is given that S^{\prime} is moving at a speed v relative to S in the x-direction. Find the space and time separation of these events in S^{\prime}.
(b) Show that the force required to accelerate a particle of rest mass m_{0} is given by $F=m_{0} \gamma^{3} a$, where acceleration and velocity are parallel to each other.
(c) Two particles (1 and 2) move in opposite directions. Particle 1 moves with speed 0.6 C and particle with speed 0.8 C , respectively in the laboratory frame. Calculate the speed of particle 2 relative to particle 1 . What would the relative speed be if the particles were moving towards each other ?
3. Attempt any two parts :
(a) A particle of mass m can move freely along the x-axis between $-a / 2 \leq x \leq a / 2$, but is not found outside this region. The wave function for the first excited state is given by :

$$
\begin{array}{cc}
\Psi(x, t)=A \sin \frac{2 \pi x}{a} e^{-i E t / \hbar} \text { for }-\frac{a}{2} \leq x \leq \frac{a}{2} \\
=0 & \text { otherwise }
\end{array}
$$

Verify that the wave function satisfies $\mathbf{4 + 1}$ Schrodingers equation. Determine the energy E for this state.
(b) The energy of a linear harmonic oscillator
is $E=\frac{p x^{2}}{2 m}+\frac{k x^{2}}{2}$. Using the uncertainty
principle obtain the minimum energy of the oscillator.
(c) Verify the commutator relation $\left[L_{z^{\prime}} L^{2}\right]=0$
4. Attempt any two parts
(a) The wave function of a particle in a box of
length L is given by $\Psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$.
Calculate the probability of finding the particle in the region 0 to $L / 2$.
(b) Calculate the point at which the radial probability density is maximum for the $n=2$, $l=1$ state of the hydrogen atom. The ware function for this state is,
$\Psi_{21}(\vec{r})=\frac{1}{\left(2 a_{0}\right)^{3 / 2}} \frac{r}{a_{0} \sqrt{3}} \mathrm{e}^{-r / 2 a_{0}}$
(c) State Hund's rules. Apply these rules to
determine the ground state of the carbon atom.
5. Attempt any two parts:
(a) The half life of an element ${ }^{215}$ At is $100 \mu \mathrm{~s}$. If a sample initially contains 6 mg of the elements, determine its activity after $200 \mu \mathrm{~s}$.
(b) Draw labelled schematic diagram of a 3+2 nuclear reactor. What are converters and breeders?
(c) Draw the B. E. curve showing the binding $2+3$ energy per nucleon as a function of mass number. Discuss its salient features.
Physical constants :
$h=6.626 \times 10^{-34} \mathrm{Js}$
$m e=9.1 \times 10^{-31} \mathrm{~kg}$
$m p=1.67 \times 10^{-27} \mathrm{~kg}$
$\hbar=1.054 \times 10^{-34} \mathrm{Js}$

विज्ञान स्नातक (बी.एस सी.)

सत्रांत परीक्षा
जून, 2010

पी.एच.ई.-11 : आधुनिक भौतिकी

समय : 2 घण्टे अधिकतम अंक : 50
नोट : सभी प्रश्न करें। प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। आप
लॉग सारणी या कैल्कुलेटर का प्रयोग कर सकते हैं। भौतिक नियतांकों
के मान अंत में दिए गए हैं।

1. कोई पाँच भाग करें। $2 \times 5=10$
(a) समझाएं कि काल वृद्धि का प्रभाव हमें रोज़ाना की परिघटनाओं में क्यों दिखाई देता ?
(b) एक इलेक्ट्रॉन की दे ब्रॉग्ली तरंग दैर्ध्य 1 nm है। इसकी गतिज ऊर्जा परिकलित करें।
(c) अगर A और B हर्मिटी संकारक हैं तो सिद्ध कीजिए कि $i[\mathrm{~A}, \mathrm{~B}]$ हर्मिटी है।
(d) एक रेडियोएक्टिव तत्त्व की अर्ध-आयु 5 वर्ष है। 20 वर्ष बाद इस तत्व का कितना भाग बचेगा ?
(e) Sr^{38} के लिए इलेक्ट्रॉनिक विन्यास परिकलित करें।
(f) कारण सहित समझाएं कि निम्नलिखित समीकरण संभव है कि नही :
(i) $\pi^{+}+p \rightarrow \lambda+K^{\circ}$ (ii) $\lambda \rightarrow \pi^{+}+\pi^{-}$
(g) तरंग फलन की प्रायिकतात्मक व्याख्या से आप क्या समझते हैं ?
2. कोई दो भाग करें।
$5 \times 2=10$
(a) तंत्र S में दो घटनाएं समकालिक हैं और एक दूसरे से दूरी Δx पर घटती हैं। सिद्ध करे कि तंत्र S^{\prime} में ये दोनों घटनाएं अलग-अलग स्थितियों और क्षणों पर घटेंगी। इन दोनों घटनाओं की S^{\prime} तंत्र में दूरी और समयांतराल की गणना करें। दिया है कि तंत्र S^{\prime} तंत्र S के सापेक्ष चाल v से x दिशा में चल रहा है।
(b) सिद्ध करें कि विराम द्रव्यमान m_{0} वाले कण को आपेक्षिकीय चाल तक त्वरित करने के लिए आवश्यक बल का मान है : $F=m_{0} \gamma^{3} a$ जबकि त्वरण और वेग एक ही दिशा में हैं।
(c) कण 1 और 2 कमशः 0.6 C और 0.8 C चाल से प्रयोग शाला तंत्र में विपरीत दिशाओं में चलते हैं। कण 1 के सापेक्ष कण 2 की चाल परिकलित करें। कणों की सापेक्ष चाल क्या होगी अगर ये एक दुसरे की ओर आ रहे?
3. कोई दो भाग करें।
$5 \times 2=10$
(a) द्रव्यमान m का कण x-अक्ष पर $-\frac{a}{2} \leq x \leq \frac{a}{2}$ बीच

मुक्त रूप से चलता है, लेकिन इस क्षेत्र के बाहर नहीं

पाया जाता है। प्रथम उत्तेजित अवस्था के लिए तरंग फलन निम्नलिखित है :

$=0$
अन्यथा
सत्यापित करें कि यह तरंग फलन श्रोडिन्गर समीकरण $4+1$
को संतुष्ट करता है। इस अवस्था के लिए ऊर्जा E का
मान प्राप्त करें।
(b) एक रैखिक आवर्त दोलक की ऊर्जा
$E=\frac{p x^{2}}{2 m}+\frac{k x^{2}}{2}$ है।
अनिश्चितता सिद्धांत का प्रयोग करके दोलक की न्यूनतम
उर्जा निकालें।
(c) निम्नलिखित कम्यूटेटर संबंध को सत्यापित करें।
$\left[L_{z^{\prime}}, L^{2}\right]=0$
4. कोई दो भाग करें।
(a) लम्बाई L के एक बक्स में कण का तरंग फलन
$\Psi_{\mathrm{n}}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$ द्वारा दिया जाता है।
O से $L / 2$ के बीच कण के पाए जाने की प्रायिकता
परिकलित करें।
(b) हाइड्रोजन परमाणु की $n=2, l=1$ अवस्था के लिए त्रिज्य प्रायिकता घनत्व किस बिंदु पर अधिकतम होगा ? इस अवस्था के लिए तरंगफलन निम्नलिखित है :
$\Psi_{21}(\vec{r})=\frac{1}{\left(2 a_{0}\right)^{3 / 2}} \frac{r}{a_{0} \sqrt{3}} \mathrm{e}^{-r / 2 a_{0}}$
(c) हुण्ड के नियमों का कथन दें। इन नियमों को लागू कर $\mathbf{3 + 2}$ कार्बन परमाणु की मूल अवस्था परिकलित करें।
5. कोई दो भाग करें :
$5 \times 2=10$
(a) तत्त्व ${ }^{215} \mathrm{At}$ की अर्ध-आयु $100 \mu \mathrm{~s}$ है। अगर आरम्भ में नमूने में 6 mg तत्त्व होता है तो $200 \mu \mathrm{~s}$ के बाद इसकी सक्रियता परिकलित करें।
(b) नाभिकीय रिएक्टर का प्रतीकों सहित आरेख खीचें। $3+2$ परिवर्तक और ब्रीडर क्या होते हैं ?
(c) द्रव्यमान संख्या के फलन के रूप में प्रति न्यूक्लिऑन $2+3$ बंधन ऊर्जा का आरेख खीचें। इस आरेख के मुख्य लक्षणों की चर्चा करें।

भौतिक नियतांक़ :
$h=6.626 \times 10^{-34} \mathrm{Js}$
$m e=9.1 \times 10^{-31} \mathrm{~kg}$
$m p=1.67 \times 10^{-27} \mathrm{~kg}$
$\hbar=1.054 \times 10^{-34} \mathrm{Js}$

