No. of Printed Pages : 4

00068

MCH-004

P.G. DIPLOMA IN ANALYTICAL CHEMISTRY (PGDAC)

Term-End Examination

June, 2010

MCH-004 : ELECTROANALYTICAL AND OTHER METHODS

Tim	e : 3 h	ours	Maximum Marks	Maximum Marks : 75	
Note: Answer marks.			any five questions. All questions carry equal		
1.	(a)	(i)	Write the cell reaction for the cell give below :	1	
	. .	(ii)	Why is calomel electrode preferred over hydrogen electrode ?	ıg. 1	
		(iii)	Name the membrane which is used to prepare F ⁻ ion electrode.	1	
	•	(iv)	Write the expression for molar conductivity.	1	
		(v)	What is potential drop ? How is it expressed ?	1	
	(b)	(i)	Calculate the molar conductivity of 0.005 mol dm ⁻³ ethanoic acid if its degree of dissociation is 0.058 and molar conductivity at infinite dilution is 390.7 S cm ³ mol ⁻¹ .	2	

· 1

MCH-004

P.T.O.

- (ii) Why has cyclic voltammetry been 2 considered as the most versatile electrochemical technique ?
- (iii) Give any two advantages of **2** amperometry.
- (iv) Calculate the percentage mass change 2(m%) for the following reaction :

CuSO₄ . 5 H₂O $\xrightarrow{\Delta}$ CuSO₄ + 5 H₂O [A_r(Cu) = 63.54, A_r(S) = 32.00, A_r(O) = 16.00, A_r(H) = 1.00]

- (v) Complete the following nuclear 2 reactions :
 - (a) ${}^{11}B + {}^{2}D \rightarrow {}^{9}Be + \dots$

(b)
$${}^{60}\text{Ni} + ... \rightarrow {}^{62}\text{Zn} + 2n$$

(a) Write the reaction, calculate the cell potential 7 and predict whether the reaction is spontaneous or not for the cell given below :
 Pb|Pb²⁺(0.01 M)||I₂(1 M), I⁻(0.001 M)|Pt

$$\begin{bmatrix} E^{\circ}_{Pb}^{2} + /Pb = -0.126 \text{ V}; E^{\circ}_{I_{2}} / 2I^{-} = 0.615 \text{ V} \end{bmatrix}$$

(b) Taking a suitable example explain how are thermometric titrations different from the classical acid-base titrations. Discuss the advantages of the thermometric titrations.

- 3. (a) Write at least five differences between 7 nuclear reactions and chemical reactions.
 - (b) What is limiting molar conductivity? From 8 the following data of limiting molar conductivities, calculate the limiting molar conductivity of benzoic acid.

Sodium benzoate : 8.24×10^{-3} S m² mol⁻¹ Hydrochloric acid : 4.26×10^{-2} S m² mol⁻¹ Sodium chloride : 1.26×10^{-2} S m² mol⁻¹

- 4. (a) Explain briefly the technique of Neutron 7 Activation Analysis (NAA).
 - (b) A solution containing 0.50 g of copper as Cu^{2+} requires 20 minutes for complete deposition of copper at 1.50 A. Calculate the coulombs required and efficiency of the process [Ar (Cu) = 63.54].

5. (a) Distinguish between : 8

- (i) Linear-scan polarography and pulse polarography.
- (ii) Differential pulse polarography and square-wave polarography.
- (b) Give the experimental details of the 7 polarographic method for the determination of lead and copper in the steel.
- MCH-004 3 P.T.O.

- 6. (a) Derive an expression used for determination 7 of percentage amount of the components in the sample for IDA method.
 - (b) Write the principle and working of a calomel 8
 electrode. Draw a labelled diagram of a
 typical calomel electrode.
- 7. (a) Explain the factors which limit the accuracy 7 of pH measurements.

8

(b) An impure sample of $CaC_2O_4.H_2O$ is analysed using TGA technique. TG curve of the sample indicates total mass change from 85 mg to 30.7 mg, when this sample was heated upto 900°C. Calculate the percent purity of the sample. Draw a thermogram for this decomposition. $[A_r(Ca) = 40.1, A_r(O) = 16.00, A_r(C) = 12.00,$

 $A_r(Ca) = 40.1, A_r(C) = 10.00, A_r(C) = 12.00, A_r(H) = 1.00]$

8. Write short notes on the following : 5x3=15

4

- (a) Differential Thermal Analysis.
- (b) Isotope dilution technique.
- (c) Applications of DSC technique.