BACHELOR'S DEGREE PROGRAMME

Term-End Examination
June, 2010
MATHEMATICS

MTE-4 : ELEMENTARY ALGEBRA

Time : $11 / 2$ hours

Maximum Marks : 25
Instructions :

1. Students registered for both MTE-4 \mathcal{E} MTE-5 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
2. Students who have registered for MTE-4 or MTE-5 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

Note: Question no. 1 is compulsory. Attempt three more questions from Questions no. 2 to 5 . Calculators are not allowed.

1. Decide which of the following are true or false. If true, furnish the proof, and if false, give a counter example.
(a) $\mathbf{N} \times \mathbf{Z} \subseteq \mathbf{Z} \times \mathbf{Q} \times \mathbf{R}$
(b) A 4th root of -1 is a real number.
(c) The quadratic equation $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}=0$ has equal roots if $2 \mathrm{a} x+\mathrm{b}$ divides $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}$.
(d) For any two square matrices A and B, $|A+B|=|A|+|B|$.
(e) The system of equations:

$$
\begin{aligned}
& 2 x+y+z=0 \\
& x+2 y+z=0
\end{aligned}
$$

has a unique solution when $z=1$.
2. (a) (i) Let $\mathrm{U}=\mathbf{N}, \mathrm{A}=\{\mathrm{n} \in \mathrm{N} \mid 3$ divides n$\}$,
$B=\{n \in \mathbf{N} \mid 5$ divides $n\}$
Check whether $(A \cup B)^{c}=A^{c} \cup B^{c}$.
(ii) Let $A=\{1,2,3,5\}, B=\{4,5,2,6\}$, $C=\{1,2,3,7,4\}$. Find $B \times(A \backslash C)$.
(b) Find the value(s) of x such that:

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
1 & x & 3 x \\
1 & 1 & 2
\end{array}\right|=0
$$

3. (a) An amount of Rs. $70,000 /-$ is invested in the shares of 3 companies at rates $5 \%, 7 \%$ and 9% per annum, respectively. The total annual income is Rs. 4,800 . The income from the third investment is Rs. 600 more than the income from the second investment. Translate the situation into a system of three linear equations.
(b) Obtain the square roots of i in C .
(c) The sum of two odd numbers is even. Give
the contrapositive of this statement.
4. (a) Find the sum of the squares of the roots of 2 the cubic equation $x^{3}-9 x^{2}+26 x-24=0$.
(b) Can the following system of linear equations 3 be solved by Cramer's rule? If yes, solve it by Cramer's rule. Otherwise solve it by Gaussian elimination method.

$$
\begin{aligned}
& x-2 y+z=6 \\
& 3 x+y-4 z=-7 \\
& 5 x-3 y+2 z=5 .
\end{aligned}
$$

5. (a) Use Cauchy's inequality to show that: 2

$$
(\sqrt{1}+\sqrt{2}+\ldots+\sqrt{n})\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}\right) \geq n^{2}
$$

(b) Solve the equation $x^{3}+3 x^{2}-6 x-8=0$, if we 3 know that its roots are in arithmetic progression.

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा

जून, 2010
गणित
एम.टी.ई.-4 : प्रारंभिक बीजगणित
समय : $1 \frac{1}{2}$ घण्टे अधिकतम अंक : 25
निर्देश :

1. जो छात्र एम.टी.ई-4 और एम.टी.ई. -5 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्नपत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्क्रम कोड तथा पाठ्कम नाम साफ-साफ लिखकर दें।
2. जो छात्र एम.टी.ई. -4 या एम.टी.ई. -5 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्नपत्र के उत्तर, उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ-साफ लिखकर दें।

नोट: प्रश्न सं. 1 करना जरूरी है। प्रश्न 2 से 5 में से तीन प्रश्न करें।
कैलकुलेटर का प्रयोग करने की अनुमति नहीं है।

1. बताइए निम्नलिखित में से, कौन-से कथन सत्य और कौन-से $\mathbf{1 0}$ कथन असत्य हैं। यदि सत्य हैं, तो उसकी उपपत्ति दीजिए और असत्य है तो प्रति-उदाहरण दीजिए :
(a) $\mathbf{N} \times \mathbf{Z} \subseteq \mathbf{Z} \times \mathbf{Q} \times \mathbf{R}$
(b) -1 का चौथा मूल वास्तविक संख्या है।
(c) यदि $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}, 2 \mathrm{a} x+\mathrm{b}$ से विभाजित होता है, तो द्विघात समीकरण $a x^{2}+b x+c=0$ के समान मूल होते हैं।
(d) किन्हीं दो वर्ग आव्यूहों A और B के लिए $|\mathrm{A}+\mathrm{B}|=|\mathrm{A}|+|\mathrm{B}|$.
(e) समीकरण निकाय :

$$
\begin{aligned}
& 2 x+y+z=0 \\
& x+2 y+z=0
\end{aligned}
$$

का अद्वितीय हल होता है जब $z=1$.
2. (a) (i) मान लीजिए $U=N$,
$A=\{n \in N \mid 3, n$ को विभाजित करता हैं $\}, 2$
$B=\{n \in N \mid 5, n$ को विभाजित करता है $\}$.
जाँच कीजिए $(A \cup B)^{c}=A^{c} \cup B^{c}$. है या नहीं।
(ii) मान लीजिए $\mathrm{A}=\{1,2,3,5\}$, $\quad 1$
$B=\{4,5,2,6\}, C=\{1,2,3,7,4\}$. तब $B \times(A \backslash C)$ ज्ञात कीजिए।
(b) x के ऐसे मान ज्ञात कीजिए जिनके लिए,

$$
\left|\begin{array}{ccc}
1 & 2 & 3 \\
1 & x & 3 x \\
1 & 1 & 2
\end{array}\right|=0
$$

3. (a) 70,000 रु. की राशि को क्रमश: $5 \%, 7 \%$ और 9% वार्षिक दरों पर तीन कम्पनियों के शेयरों में निवेश किया जाता है। कुल वार्षिक आय 4,800 रु. है। तीसरे निवेश से प्राप्त होने वाली आय दूसरे निवेश से प्राप्त होने वाली आय से 600 रु. ज्यादा है। इस स्थिति को तीन रैखिक समीकरणों के निकाय में रूपांतरित कीजिए।
(b) C में i के वर्गमूल प्राप्त कीजिए। 2
(c) "दो विषम संख्याओं का योग सम होता है।" इस कथन 1 का प्रतिधनात्मक कथन दीजिए।
4. (a) त्रिघाती समीकरण :
$x^{3}-9 x^{2}+26 x-24=0$ के मूल के वर्गों का योग ज्ञात कीजिए।
(b) क्या निम्नलिखित रैखिक समीकरण निकाय को क्रेमर 3 नियम से हल किया जा सकता है ? यदि किया जा सकता है, तो इसे क्रेमर नियम से हल कीजिए। अन्यथा, इसे गाउसीय निराकरण विधि से हल कीजिए।

$$
\begin{aligned}
& x-2 y+z=6 \\
& 3 x+y-4 z=-7 \\
& 5 x-3 y+2 z=5
\end{aligned}
$$

5. (a) कौशी असमिका का प्रयोग करके दिखाइए कि :

$$
(\sqrt{1}+\sqrt{2}+\ldots+\sqrt{\mathrm{n}})\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{\mathrm{n}}}\right) \geq \mathrm{n}^{2} .
$$

(b) समीकरण $x^{3}+3 x^{2}-6 x-8=0$, को हल कीजिए
(यदि हम जानते हैं कि इसके मूल समांतर श्रेणी में हैं)।

