BACHELOR'S DEGREE PROGRAMME

Term-End Examination

June, 2010

ELECTIVE COURSE : MATHEMATICS

 MTE-14 : MATHEMATICAL MODELLINGTime : 2 hours
Maximum Marks : 50

Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed

1. (a) A particle moves in a straight line and its velocity at a distance x from the origin is
$\mathrm{k} \sqrt{\mathrm{a}^{2}-x^{2}}$, where k and a are constants.
Prove that the motion is simple harmonic and find the amplitude and the periodic time of the motion.
(b) The heat emission rate associated with a stack gas is $5000 \mathrm{~kJ} / \mathrm{s}$, the wind and stack gas speeds are 5 and $10 \mathrm{~m} / \mathrm{s}$, respectively, and the inside stack diameter at the top is 3 m . Estimate the plum rise by means of the Moses and Carson formula.
(c) Consider the arterial blood viscosity
$\mu=0.027$ poise. If the length of the artery is 3 cm and radius $9 \times 10^{-3} \mathrm{~cm}$ and pressure difference $\left(P_{1}-P_{2}\right)$ is 5×10^{3} dynes $/ \mathrm{cm}^{2}$, then.
(i) Find the velocity $\mathrm{u}(\mathrm{y})$ and maximum peak velocity of blood.
(ii) Find the Shear Stress at the wall.
2. (a) Write (i) The diffusion equation with diffusion coefficient k and (ii) the wave equation with wave velocity C . Find the dimensions of k and C using these equations.
(b) Consider the following system of differential equations representing a prey and predator population model.

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=x^{2}-y \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=x+y .
\end{aligned}
$$

(i) Identify all the real critical points of the system of equations given above
(ii) Obtain the type and stability of these critical points.
3. (a) Formulate the initial boundary value problem for the temperature T in a cylindrical rod with insulated sides and with flat ends at $x=0$ and $x=\mathrm{L}$, the end at $x=0$ is kept at $60^{\circ} \mathrm{C}$. The end at $x=\mathrm{L}$ is insulated. At time $t=0$, the temperature distribution throughout the rod is $f(x), 0<x<\mathrm{L}$. Assume no internal heat generation.
[Hint: Heat flux across an insulated boundary is zero, that is grad T. $n=0$, where n is normal to the boundary]
(b) Find the steady state solution of the problem formulated in Q3 (a) above.
(c) Define discrete and continuous models, giving an example of each.
4. (a) The respiratory flow of air in the lungs is affected due to air pollution. If you have to model respiratory flow write four essentials for the model.
(b) A Cassette player repairman finds that the time spent on his jobs has an exponential distribution with mean 15 minutes. If he repairs sets in the order in which they came in, and if the arrival of sets is approximately Poisson with an average rate of 18 per 9 -hours a day, what is repairman's expected idle time each day? How many jobs are ahead of the set just brought in?
(c) Solve the equation of motion

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+\frac{\mathrm{g}}{l} \theta=0
$$

of a simple pendulum of length l making an angle θ with the vertical, subject to the conditions $\theta=0$ and $\frac{d \theta}{d t}=w$ at time $t=0$. At what time, is the angular velocity of the pendulum maximum? Here g is the acceleration due to gravity.
5. (a) State Kepler's third law of motion. Using dimensional analysis, show that the planets obey Kepler's third law.
(b) The cost of production of a substance per unit is given by the formula $C=q^{2}-4 q+1$, where q is the material cost. Find the selling price per unit, so that the profit on 100 units will be Rs.200, if $q=15$. Also calculate the cost of material per unit so that profit on 100 units can be maximised, if the selling price is Rs. 200.
6. (a) A projectile is fired with a constant speed v at two different angles of projection α and β such that it gives the same range. Show that $\operatorname{cosec} \alpha=\sec \beta$.
(b) Two players A and B are involved in a game.

Each player has three different strategies. The pay-off table is given below.

Find the Saddle point and value of the game.
(c) Imagine a population governed by the 3 logistic equation

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=2\left(1-\frac{x}{100}\right) x .
$$

(i) Find the equilibrium level of this population.
(ii) Initially $(\mathrm{t}=0)$ the population is 100 and it remains at this level till $t=10$, when an epidemic perturbs the population down to 80 . Find the population at $\mathrm{t}=15$.
7. (a) For a rain drop of diameter $\mathrm{d}=0.25 \mathrm{~cm}$ find the terminal velocity. How long the drop takes to reach the ground if it starts its descent in a cloud 5000 m high?
(b) Write two limitations for Prey-Predator 2 Model.
(c) The return distribution on the 2 securities
A and B, is as follows :

Event (j)	Chance	Return	
		$\mathrm{R}_{1 \mathrm{j}}$	$\mathrm{R}_{2 \mathrm{j}}$
1	0.33	19	18
2	0.25	17	16
3	0.17	11	11
4	0.25	10	9

Find which security is more risky in the
Markowitz sense.

स्नातक उपाधि कार्यक्रम

स्रांत परीक्षा
जून, 2010
ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-14 : गणितीय निदर्शन

समय : 2 घण्टे
अधिकतम अंक : 50
नोट : किन्हीं पाँच प्रश्नों के उत्तर दीजिए। सभी प्रश्नों के अंक समान हैं। कैलकुलेटर का प्रयोग करने की अनुमति नहीं है।

1. (a) एक कण सीधी रेखा में गतिमान होता है और मूल बिंदु से दूरी x पर इसका वेग $\mathrm{k} \sqrt{\mathrm{a}^{2}-x^{2}}$ है, जहाँ k और a अचर हैं। सिद्ध कीजिए कि इसकी गति सरल आवर्ती है और गति का आयाम और आवर्त समय ज्ञात कीजिए।
(b) स्टैक गैस से संबंधित ऊष्मा उत्सर्जन दर $5000 \mathrm{~kJ} / \mathrm{s}$

है, पवन चाल और स्टैक गैस चाल क्रमशः 5 और 10
m / s है और सिरे पर स्टैक गैस का अंत: व्यास 3 m है। मोसेज और कार्सन सूत्र की सहायता से पिच्छक उत्थान आकलित कीजिए।
(c) रक्त-धमनी की श्यानता $\mu=0.027$ पायज लीजिए। यदि

धमनी की लम्बाई 3 cm , त्रिज्या $9 \times 10^{-3} \mathrm{~cm}$ और दाब अंतर $\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right), 5 \times 10^{3}$ dynes $/ \mathrm{cm}^{2}$ हो तो -
(i) रक्त का वेग $u(y)$ और अधिकतम शिखर वेग ज्ञात कीजिए।
(ii) दीवार पर अपरूपण-प्रतिबल ज्ञात कीजिए।
2. (a) (i) विसरण गुणांक k वाला विसरण समीकरण और 3
(ii) तरंग वेग C वाला तरंग समीकरण लिखिए। इन समीकरणों द्वारा k और C की विमाएँ ज्ञात कीजिए।
(b) निम्नलिखित अवकल समीकरण निकाय लीजिए जो 7 शिकार और परभक्षी के जनसंख्या निदर्श को निरूपित करता है :

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=x^{2}-y \\
& \frac{\mathrm{~d} y}{\mathrm{~d} t}=x+y .
\end{aligned}
$$

(i) ऊपर दिए गए समीकरण निकाय के सभी वास्तविक क्रांतिक बिन्दु पहचानिए।
(ii) इन क्रांतिक बिन्दुओं के प्रकार और स्थायित्व प्राप्त कीजिए।
3. (a) एक बेलनाकार छड़ में तापमान T की आदि परिसीमा मान समस्या का सूत्रण कीजिए जिसकी सतहें उष्मारोधी हैं और जिसके सपाट सिरे $x=0$ और $x=\mathrm{L}$ पर हैं। $x=0$ पर सिरे को $60^{\circ} \mathrm{C}$ के तापमान पर रखा गया हैं। $x=\mathrm{L}$ पर सिरा ऊष्मारोधी हैं। समय $t=0$ पर पूरी छड़ में तापमान बंटन $f(x), 0<x<\mathrm{L}$ हैं। मान लीजिए कि छड़ के अन्दर कोई ऊष्मा जनित नहीं हो रही हैं।
(संकेत : ऊष्मारोधी परिसीमा पर ऊष्मा अभिवाह शून्य होता है, अर्थात् grad T. $n=0$, , जहाँ n परिसीमा पर अभिलंब है।)
(b) उपर्युक्त 3(a) में सूत्रित समस्या का अपरिवर्ती अवस्था हल ज्ञात कीजिए।
(c) प्रत्येक के उदाहरण सहित असंतत और संतत निदर्शो को परिभाषित कीजिए।
4. (a) फेफड़े में सांस लेने के दौरान वायु का प्रवाह प्रदूषण के कारण प्रभावित होता है। यदि आपको सांस लेने के प्रवाह का निदर्श करना हो तब निदर्श के लिए चार अनिवार्य तथ्य लिखिए।
(b) एक कैसेट प्लेयर का मिस्त्री यह पाता है कि उसके जॉब पर खर्च हुआ समय 15 मिनट के माध्य वाला चरघातांकी बंटन है। यदि वह सेटों की मरम्मत उस क्रम में करता है जिस क्रम में वे आते है, और सेटों का आगमन प्रति 9 घंटा दिवस में 18 की औसत दर से लगभग प्वासां हो, तो मिस्र्री के लिए प्रति दिन प्रत्याशित निष्क्रिय समय क्या होगा ? अभी-अभी लाए गए सेट से आगे और कितने जॉब होंगे ?
(c) लंबाई l वाले सरल लोलक, जो ऊध्र्वाधर के साथ कोण θ बनाता हो, के गति समीकरण

$$
\frac{\mathrm{d}^{2} \theta}{\mathrm{~d} t^{2}}+\frac{\mathrm{g}}{l} \theta=0
$$

को हल कीजिए, जबकि समय $t=0$ पर $\theta=0$ और $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\mathrm{w}$ किस समय पर लोलक का कोणीय वेग अधिकतम होगा ? यहाँ g गुरुत्वीय त्वरण हैं।
5. (a) केप्लर के तृतीय नियम का कथन दीजिए। विमीय 6 विश्लेषण का प्रयोग करके दिखाइए कि ग्रह केप्लर के तृतीय नियम का पालन करते हैं।
(b) एक वस्तु की प्रति इकाई उत्पादन लागत सूत्र $\mathrm{C}=\mathrm{q}^{2}-4 \mathrm{q}+1$, द्वारा दी गई है, जहाँ q माल लागत है। प्रति इकाई बेचने की कीमत ज्ञात कीजिए जिससे की 100 इकाइयों पर 200 रू. का लाभ हो जबकि $q=15$ है। यदि बेचने की कीमत 200 रू. हो तो 100 इकाइयों पर अधिकतम लाभ प्राप्त करने के लिए प्रति इकाई माल लागत भी ज्ञात कीजिए।
6. (a) दो अलग-अलग प्रेक्षण कोणों α और β पर अचर गति v से एक प्रक्षेप्य इस प्रकार दागा जाता है कि वह समान परास देता है। दिखाइए कि $\operatorname{cosec} \alpha=\sec \beta$.
(b) दो खिलाड़ी A और B एक खेल खेल रहे हैं। प्रत्येक खिलाड़ी के पास तीन अलग-अलग युक्तियाँ हैं। भुगतान सारणी नीचे दी गई है :

$$
\begin{gathered}
\text { A } \\
{\left[\begin{array}{ccc}
5 & -7 & -17 \\
4 & 6 & -15 \\
9 & 10 & -13
\end{array}\right]}
\end{gathered}
$$

खेल का पलायन बिन्दु और मान ज्ञात कीजिए।
(c) वृद्धिघात समीकरण

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=2\left(1-\frac{x}{100}\right) x .
$$

द्वारा नियंत्रित समष्टि की कल्पना कीजिए।
(i) इस समष्टि का संतुलन स्तर ज्ञात कीजिए।
(ii) प्रारंभिकत : $(t=0)$ समष्टि 100 है और $t=10$ तक इस स्तर पर रहती है, जब तक कि महाभारी के कारण समष्टि 80 तक नहीं आ जाती है। $t=15$ पर समष्टि ज्ञात कीजिए।
7. (a) व्यास $d=0.25 \mathrm{~cm}$ वाली वर्षा-बिन्दु का चरम वेग ज्ञात कीजिए। यदि वर्षा-बिन्दु 5000 m की ऊँचाई पर स्थित बादल से नीचे गिरना प्रारंभ करती है तो इसे भूमि तक पहुँचने पर कितना समय लगेगा ?
(b) परभक्षी-शिकार निदर्श की दो परिसीमाएँ लिखिए।
(c) दो प्रतिभूतियों A और B के प्रतिफल बंटन नीचे दिए गए हैं :

घटना (j)	प्रायिकता 2	प्रतिफल	
		$\mathrm{R}_{1 \mathrm{j}}$	$\mathrm{R}_{2 \mathrm{j}}$
1	0.33	19	18
2	0.25	17	16
3	0.17	11	11
4	0.25	10	9

मार्कोविच रूप में कौन-सी प्रतिभूति ज्यादा जोखिम पूर्ण होगी, ज्ञात कीजिए।

