M.Sc. MATHEMATICS WITH APPLICATIONS

 IN COMPUTER SCIENCE
MMTE-007 : SOFT COMPUTING AND

 APPLICATIONSTime : 2 hours
Maximum Marks : 50
Note: Question No. 7 is Compulsory. Attempt any four questions from question no. 1 to 6. Use of calculator is not allowed.

1. (a) Let R and S be binary relations defined in space $X \times Y$ and $Y \times Z$ respectively by matrices M_{R} and $\mathrm{M}_{\mathrm{S}^{\prime}}$ where

$$
\begin{array}{lllll}
y_{1} & y_{2} & z_{1} & z_{2} & z_{3}
\end{array}
$$

$$
\mathrm{M}_{\mathrm{R}}=x_{1} x_{2}\left[\begin{array}{cc}
0.7 & 0.5 \\
0.8 & 0.4
\end{array}\right] \text { and } \mathrm{M}_{\mathrm{S}}=y_{1} y_{2}\left[\begin{array}{ccc}
0.9 & 0.6 & 0.2 \\
0.1 & 0.7 & 0.5
\end{array}\right]
$$

then find the following compositions.
(i) Max - Min
(ii) Max - Product
(iii) Max - Average
(iv) Min - Max
(b) Define a feed forward neural network. How does it differ from a recurrent neural network ?
2. (a) Show that De-Morgan's Law holds for 5 fuzzy sets, i.e.
(i) $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
(ii) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$,
(b) Let us consider the fuzzy set, defined on universe of discourse $X=\{a, b, c, d, e\}$,

$$
A=\left\{\frac{0.6}{a}+\frac{0.8}{b}+\frac{1}{c}+\frac{0.9}{d}+\frac{0.7}{e}\right\} .
$$

Find α-cut sets for the value of $\lambda=1,0.8,0.6,0^{+}$and 0 and give reasons for your answer.
3. (a) Input to a single - input neuron is 2 , its weight is 2.3 and its bias (β) is -3 . What is the net input to the transfer function? Also, find the output of the neuron, if it has following transfer functions:
(i) hard limiting
(ii) linear
(iii) log-sigmoid
(b) Consider 3-layer perceptron with three inputs, three hidden and one output units. Given the initial weight matrix for hidden and output nodes as.
$\mathrm{W}_{\mathrm{H}}=\left[\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 3 & 1\end{array}\right]$ and $\mathrm{W}_{\mathrm{O}}=\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$.
If input vector is $I=\left(\begin{array}{ll}3 & 40\end{array}\right)$, calculate the output using hard limiting function as activation function.
4. (a) If the input vectors are $\mathrm{I}_{1}=[-10]^{\mathrm{T}}$, and $I_{2}=[01]^{\mathrm{T}}$, and initial values of two weight vectors are $[0-1]^{\mathrm{T}}$, and $[-2 / \sqrt{5} 1 / \sqrt{5}]^{\mathrm{T}}$. Calculate the resulting weights found after training the competitive layer with the Kohonen's rule and a learning rate α of 0.5 on the input series in order I_{1} and I_{2}.
(b) Differentiate between 'Algebraic Sum' and
5. (a) Out of three genetic operators viz. Selection, Crossover and Mutation, list and justify which operator or combination thereof will be required for the following ?
(i) To fill the population with copies of the best individual from the. population.
(ii) To cause the algorithms to converge on a good but sub-optimal solution.
(iii) To induce a random walk through the search space.
(iv) To create a parallel, noise-tolerant, hill climbing algorithm.
(b) Why is ranking selection preferred over Roulette - wheel selection in GA ?
6. Create two clusters of the five patterns X 1 to X 5 given in the following table by the e-means procedure using Euclidean distance.

Name of Pattern	Values of attributes	
	A1	A2
X_{1}	1	1
X_{2}	2	3
X_{3}	3	1
X_{4}	4	4
X_{5}	5	2

7. Which of the following statements are true and
which are false. Give reasons for your answer.
(a) If $\alpha_{1}<\alpha_{2}$, then $\mathrm{A} \alpha_{1} \supseteq \mathrm{~A} \alpha_{2}$, where \supseteq denotes a crisp superset relation.
(b) Let A and B are two fuzzy sets and $X \in U$. If $\mu_{\mathrm{A}}(x)=0.3$ and $\mu_{\mathrm{B}}(x)=0.9$, then $\mu_{\overline{\mathrm{A}} \cup \overline{\mathrm{B}}}=0.6$.
(c) The two children chromosomes produced by applying one point crossover on the following parent chromosomes are Parents $\left[\begin{array}{llllllllllllll}1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right]$, Children $\left[\begin{array}{llllllllllllll}1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right]$.
(d) Minkowski metric reduces to Hamming distance when the variables are binary.
(e) The neurons lying on the output layer are assumed to have log-sigmoid transfer function. The output of the k-th output neuron is estimated by the following :
$O_{o k}=\frac{e^{\mathrm{a} O_{\text {Ik }}}-\mathrm{e}^{-\mathrm{a} \mathrm{O}_{\text {Ik }}}}{\mathrm{e}^{\mathrm{a} \mathrm{O}_{\text {Ik }}+\mathrm{e}^{-\mathrm{a} \mathrm{O}_{\text {Ik }}}}}$
where a is the co-efficient of the transfer function.
