No. of Prin	inted Pages : 4 MMTE	MMTE-007						
M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE								
Ω LΩ	Term-End Examination							
00758	June, 2010							
MMTE-007 : SOFT COMPUTING AND APPLICATIONS								
<u> Time : 2 h</u>	Time : 2 hours Maximum Marks : 50							
Note: Q	Question No. 7 is Compulsory. Attempt any	four						
	questions from question no. 1 to 6. Use of calcula	tor is						
<u></u>	not allowed.							
1. (a) (b)	space X × Y and Y × Z respectively by matrices M _R and M _S , where $y_1 y_2$ $M_R = \frac{x_1}{x_2} \begin{bmatrix} 0.7 & 0.5 \\ 0.8 & 0.4 \end{bmatrix}$ and $M_S = \frac{y_1}{y_2} \begin{bmatrix} 0.9 & 0.6 & 0 \\ 0.1 & 0.7 & 0 \end{bmatrix}$ then find the following compositions. (i) Max – Min (ii) Max – Product (iii) Max – Average (iv) Min – Max Define a feed forward neural network. How does it differ from a recurrent neural network ?	2						
2. (a)	Show that De-Morgan's Law holds for fuzzy sets, i.e. (i) $(A \cup B)' = A' \cap B'$ (ii) $(A \cap B)' = A' \cup B'$,	5						

`1

•

MMTE-007

.

(b) Let us consider the fuzzy set, defined on 5 universe of discourse X = {a, b, c, d, e},

 $A = \left\{ \frac{0.6}{a} + \frac{0.8}{b} + \frac{1}{c} + \frac{0.9}{d} + \frac{0.7}{e} \right\}.$

Find α -cut sets for the value of $\lambda = 1, 0.8, 0.6, 0^+$ and 0 and give reasons for your answer.

3. (a)

Input to a single - input neuron is 2, its weight is 2.3 and its bias (β) is -3. What is the net input to the transfer function? Also, find the output of the neuron, if it has following transfer functions :

4

- (i) hard limiting
- (ii) linear
- (iii) log-sigmoid
- (b) Consider 3-layer perceptron with three 6 inputs, three hidden and one output units. Given the initial weight matrix for hidden and output nodes as.

	2	1	0]		[-1]	
W _H =	1	2	2	and $W_{O} =$	1	
11	0	3	1		2	

If input vector is $I = (3 \ 4 \ 0)$, calculate the output using hard limiting function as activation function.

(a) If the input vectors are $I_1 = [-1 \ 0]^T$, and $I_2 = [0 \ 1]^T$, and initial values of two weight vectors are $[0 \ -1]^T$, and $[-2/\sqrt{5} \ 1/\sqrt{5} \]^T$. Calculate the resulting weights found after training the competitive layer with the Kohonen's rule and a learning rate α of 0.5 on the input series in order I_1 and I_2 .

MMTE-007

4.

2

- (b) Differentiate between 'Algebraic Sum' and 2 "Bounded Sum" of two fuzzy sets.
- 5. (a) Out of three genetic operators viz. Selection, Crossover and Mutation, list and justify which operator or combination thereof will be required for the following ?
 - (i) To fill the population with copies of the best individual from the population.
 - (ii) To cause the algorithms to converge on a good but sub-optimal solution.
 - (iii) To induce a random walk through the search space.
 - (iv) To create a parallel, noise-tolerant, hill climbing algorithm.
 - (b) Why is ranking selection preferred over 4 Roulette - wheel selection in GA ?
- 6. Create two clusters of the five patterns X1 to X5 10 given in the following table by the e-means procedure using Euclidean distance.

Name of Pattern	Values of attributes		
Iname of I attern	Values of a A1 1 2 3 4 5	A2	
X ₁	1	1	
X ₂	2	3	
X ₃	3	1	
X ₄	4	4	
X ₅	5	2	

MMTE-007

P.T.O.

į,

6

3

7. Which of the following statements are *true* and **10** which are *false*. Give reasons for your answer.

£

- (a) If $\alpha_1 < \alpha_2$, then $A\alpha_1 \supseteq A\alpha_2$, where \supseteq denotes a crisp superset relation.
- (b) Let A and B are two fuzzy sets and X ϵ U. If μ_A (x) = 0.3 and μ_B (x) = 0.9, then $\mu_{\overline{A}\cup\overline{B}}$ = 0.6.
- (c) The two children chromosomes produced by applying one point crossover on the following parent chromosomes are

- (d) Minkowski metric reduces to Hamming distance when the variables are binary.
- (e) The neurons lying on the output layer are assumed to have log-sigmoid transfer function. The output of the k-th output neuron is estimated by the following :

$$O_{Ok} = \frac{e^{aO_{Ik}} - e^{-aO_{Ik}}}{e^{aO_{Ik}} + e^{-aO_{Ik}}} \rightarrow$$

where a is the co-efficient of the transfer function.

MMTE-007