M.Sc. MATHEMATICS WITH APPLICATIONS

IN COMPUTER SCIENCE

Term-End Examination

June, 2010
MMTE-006 : CRYPTOGRAPHY

Time : 2 hours
Maximum Marks : 50
Note: Answer any five out of six questions. Calculators are not allowed.

1. (a) Use the simple columnar transformation of 4 width five to encrypt the following text :
'SLINGS AND ARROWS OF OUTRAGEOUS FORTUNE'.

Is the columnar transformation a transposition cipher or a substitution cipher? Justify your answer.
(b) Explain the design criterion behind the DES 3 as published by the IBM.
(c) Explain the RSA Digital Signature Scheme. 3
2. (a) Explain the Rabin-Miller pseudo-primality 5 test.
(b) Carry out one round of encryption of the text 110011111001 using the toy block cipher with the key 110111001. The S-boxes are
$S_{1}\left[\begin{array}{ccccccccc}101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011\end{array}\right]$.
$S_{2}\left[\begin{array}{ccccccccc}100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 000\end{array}\right]$.
3. (a) Describe the Poker test for checking whether a given sequence of bits is pseudo random or not. Apply the test to the following sequence :

110111011011001111010111010000101100001001100101
[You may like to use the following values :
$\chi_{0.05,1}^{2}=3.84146, \quad \chi_{0.05,2}^{2}=5.99146$,
$\left.x_{0.05,3}^{2}=7.81473, \quad x_{0.05,4}^{2}=9.48773\right]$
(b) Prove that every carmichael number has 3
at least three prime factors.
(c) Solve the equation $2^{x} \equiv 9(\bmod 13)$.
4. (a) The following cipher text was encrypted using an affine cipher : 'CRWWZ'.
The plain text starts HA. Decrypt the message.
(b) Given the initial sequence 101001 101, find the recurrence that generates it.
(c) Describe the Blum-Blum-Shut generator for generating pseudo random bits.
5. (a) Encrypt the text 'ATTACK POSTPONED UNTIL TWO AM' using the following permutation cipher :

1	2	3	4	5
3	5	1	4	2

(b) Describe the Davies-Meyer method for constructing a compression from a block cipher with a diagram.
(c) Construct the finite field F_{8} with the addition table. You need not give the multiplication table.
6. (a) Compute $7^{98} \bmod 40$ using repeated squaring algorithm.
(b) Explain how a byte can be regarded as element of $\mathrm{F}_{2}[x] /\langle\mathrm{g}(x)\rangle$ where $\mathrm{g}(x)$ is an irreducible polynomial in $\mathrm{F}_{2}[x]$. Taking $g(x)=x^{8}+x^{4}+x^{3}+x+1$ and. regarding 11000010 and 11100101 as elements of $\mathrm{F}_{2}[x] /\langle\mathrm{g}(x)\rangle$, multiply them.

