No. of Printed Pages : 3

MMTE-006

.

M.Sc. MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE

\propto)
C	1
C)
C)
C	>

Term-End Examination June, 2010

MMTE-006 : CRYPTOGRAPHY

are	nswer any five out of six questions. Calculators ot allowed.		Not				
4	(a) Use the simple columnar transformation of width five to encrypt the following text :						
	'SLINGS AND ARROWS OF OUTRAGEOUS FORTUNE'.						
	Is the columnar transformation a transposition cipher or a substitution cipher ? Justify your answer.						
3	Explain the design criterion behind the DES as published by the IBM.	(b)					
3	Explain the RSA Digital Signature Scheme.	(c)					
5	Explain the Rabin-Miller pseudo-primality test.	(a)	2.				

1 P.T.O. **MMTE-006**

(b) Carry out one round of encryption of the text 110011111001 using the toy block cipher with the key 110111001. The S-boxes are

 $\mathbf{S}_{1} \begin{bmatrix} 101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011 \end{bmatrix}.$

- $S_{2} \begin{bmatrix} 100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 000 \end{bmatrix}.$
- (a) Describe the Poker test for checking whether 5

 a given sequence of bits is pseudo random or not. Apply the test to the following sequence :

[You may like to use the following values : $\chi^{2}_{0.05,1} = 3.84146$, $\chi^{2}_{0.05,2} = 5.99146$, $\chi^{2}_{0.05,3} = 7.81473$, $\chi^{2}_{0.05,4} = 9.48773$] (b) Prove that every carmichael number has at least three prime factors.

(c) Solve the equation $2^x \equiv 9 \pmod{13}$.

2

3

5

MMTE-006

2

(a) The following cipher text was encrypted **4** using an affine cipher :

'CRWWZ'.

4.

The plain text starts HA. Decrypt the message.

- (b) Given the initial sequence 101 001 101, find **4** the recurrence that generates it.
- (c) Describe the Blum-Blum-Shut generator for 2 generating pseudo random bits.
- 5. (a) Encrypt the text 'ATTACK POSTPONED 3 UNTIL TWO AM' using the following permutation cipher :

1	2	3	4	5
3	5	1	4	2

- (b) Describe the Davies-Meyer method for 3 constructing a compression from a block cipher with a diagram.
- (c) Construct the finite field F_8 with the addition 4 table. You need not give the multiplication table.
- 6. (a) Compute 7⁹⁸ mod 40 using repeated 4 squaring algorithm.
 - (b) Explain how a byte can be regarded as 6 element of F₂ [x]/⟨g(x)⟩ where g(x) is an irreducible polynomial in F₂ [x]. Taking g(x) = x⁸ + x⁴ + x³ + x + 1 and regarding 11000010 and 11100101 as elements of F₂[x]/⟨g(x)⟩, multiply them.

MMTE-006

3