M.Sc. (MATHEMATICS WITH APPLICATIONS

 IN COMPUTER SCIENCE)Term-End Examination
June, 2010
MMTE-005 : CODING THEORY

Time : 2 hours
 Maximum Marks : 50

Note: Question No. 1 is compulsory. Do any four questions from question number 2 to 7. Use of calculator is not allowed.

1. (a) (i) Define the weight enumerator of a 6 code.
(ii) Find the weight enumerator polynomial of the code $\left[\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1\end{array}\right]$.
(b) Define the q-cyclotomic coset of s modulo $\left(q^{t}-1\right)$. Compute the 2 -cyclotomic cosets modulo 7.
2. (a) Let $G=\left(\begin{array}{llllll}1 & 0 & 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2 & 1 & 2\end{array}\right)$ be a generator
matrix for the ternary linear code C.
(i) Write the generator matrix in the standard form and hence find the parity matrix.
(ii) Write the generator and parity matrix of the dual code. Is the code self-dual ? Justify your answer.
(b) Prove that a self-dual code has even length n and dimension $\frac{n}{2}$.
3. (a) Show that the distance function is a metric.
(b) Let r be an integer with $0 \leq r \leq m$. If $0 \leq r<m$, prove that $\mathrm{R}(r, m)^{\perp}$ $=\mathrm{R}(m-r-1, m)$.
4. (a) Let $\mathrm{g}(x)=1+x+x^{3}$ be the generator polynomial of a $[7,4]$ cyclic code. Write its generator matrix and parity check matrix.
(b) If $n=\frac{q^{r}-1}{q-1}$, where $\operatorname{gcd}(r, q-1)=1$, let
C be the narrow-sense $B C H$ code with defining set $\mathrm{T}=\mathrm{C}_{1}$ (cyclotomic set). Show that C is the Hamming Code $\mathrm{H}_{\mathrm{q}, \mathrm{r}}$.
5. (a) Let C be the $[15,7]$ narrow-sense binary

BCH code of designed distance $\delta=5$, which has defining set $\mathrm{T}=\{1,2,3,4,6,8,9,12\}$. Using the primitive 15 th root of unity α, $\alpha^{4}=\alpha+1$ the generator polynomial of C is $\mathrm{g}(x)=1+x^{4}+x^{6}+x^{7}+x^{8}$. If $y(x)=1+x+x^{5}+x^{6}+x^{9}+x^{10}$ is received, find the transmitted code word.
(b) Define convolutional codes. Give an example of a convolutional code.
(c) Define primitive polynomial. Give a primitive polynomial of degree 3 with justification.
6. (a) Let C be $(4,2)$ convolutional code with generator matrix.
$\mathrm{G}=\left[\begin{array}{cccc}1 & 1+\mathrm{D}+\mathrm{D}^{2} & 1+\mathrm{D}^{2} & 1+\mathrm{D} \\ 0 & 1+\mathrm{D} & \mathrm{D} & 1\end{array}\right]$

Use elementary row operations to find two more generator matrices for C .
(b) Show that the binary odd-like Quadratic Residue codes of length 23 are the $[23,12,7]$ binary Golay code.
7. (a) (i) Define Gray map $G: \mathbb{Z}_{4} \rightarrow \mathbb{F}_{2}{ }^{2}$. 5
(ii) Let $\mathrm{C}=\{0000,1113,2222,3331,0202$, 1313, 2020, 3131, 0022, 1131, 2200, $3313,0220,1333,2002,3111\}$ be the \mathbb{Z}_{4}-linear code. Find the Gray image of C.
(b) State the Message Passing Decoding 5 algorithm.

