MMTE-004

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

00668 **Term-End Examination**

June, 2010

MMTE-004 : COMPUTER GRAPHICS

Time Note	: 1½ : Q qı al	hours uestion No. 1 is compulso uestions out of questions 2–5. lowed.	Maximum Marks : 25 ry . Attempt any three Use of calculator is no t
1.	State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example : $2x5=10$		
	(a)	Rastor scanning is bette scanning technique used i	er than random [.] n display.
	(b)	In general, scaling an commutative operations.	d rotation are
	(c)	The area of the ellipse t rectangle with width W and	hat fits inside a d height H is WH.
	(d)	If the spacing between the uniformly doubled, the resulting B-spline curve c	knot sequence is e shape of the hanges.
	(e)	There can be only one pripoint in a projected image	incipal vanishing 2.

1 **P.T.O**. **MMTE-004**

2. (a) In a computer graphics animation scene an object is defined as a planar polyhedron. The object centre is located at position P=[0, 0, 10], and the scene is drawn, as normal, in perspective projection with the -view - point at the origin and the view direction along the z-axis. Calculate the transformation matrix that will shrink the object in size by a factor of 0.8 towards its centre point.

2

- (b) Clip the triangle that has VCS coordinates 3 of P1 = (-4, -5, 7), P2 = (0, -6, -10), P3 = (0, -4, -12) to the perspective viewing frustum given by bottom = -1, top = 1, left = -1, right = 1, near = 3, far = 9. Show your intermediate results and use the following clipping order : top, bottom, left, right, near, far.
- 3.
- (a) Use the midpoint method and symmetry 3 consideration to scan convert the parabola $x=y^2$ for the interval $|y| \le |0.$
- (b) Consider three different raster systems with 2 resolutions of 640×480 , 1280×1024 and 2560×2048 . What size frame buffer in kilo bytes is needed for each of these systems to store 24 bits per pixel ? How long would it take to load a 1280×1024 frame buffer in the same system, if 104 bits can be transferred per second ?

MMTE-004

2

- 4. (a) For a polygon with the vertices $V_0 = (10, 20)$, $V_1 = (20, 0)$, $V_2 = (30, 10)$, $V_3 = (40, 0)$, $V_4 = (40, 40)$, $V_5 = (30, 30)$, $V_6 = (20, 40)$ and $V_7 = (30, 20)$, prepare an initial sorted edge list and then make the active edge list for scan lines y = 5, 20, 30, 35.
 - (b) Write two difference each between : 2

3

- (i) Parallel projection and perspective projection.
- (ii) Shear transformation and composite transformation.
- 5. (a) Let P(t) be a Bezier curve with control points 3 P_0, P_1, \ldots, P_n . Prove that

$$|P_n - P_0| \le \text{arc length } [P(t)] \le \sum_{k=0}^{n-1} |P_{k+1} - P_k|.$$

(b) Transform the scene in the world coordinate **2** system to the viewing coordinate system with the view point at (2, 2, 2). The view plane normal vector is (-1, -1, -1) and the view up vector is (0, 1, 0).

3