M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

Term-End Examination
June, 2010
MMTE-004 : COMPUTER GRAPHICS

Time: $11 / 2$ hours
Maximum Marks : 25
Note: Question No. 1 is compulsory. Attempt any three questions out of questions 2-5. Use of calculator is not allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example :
(a) Rastor scanning is better than random scanning technique used in display.
(b) In general, scaling and rotation are commutative operations.
(c) The area of the ellipse that fits inside a rectangle with width W and height H is WH .
(d) If the spacing between the knot sequence is uniformly doubled, the shape of the resulting B -spline curve changes.
(e) There can be only one principal vanishing point in a projected image.
2. (a) In a computer graphics animation scene an object is defined as a planar polyhedron. The object centre is located at position $P=[0,0,10]$, and the scene is drawn, as normal, in perspective projection with the -view - point at the origin and the view direction along the z-axis. Calculate the transformation matrix that will shrink the object in size by a factor of 0.8 towards its centre point.
(b) Clip the triangle that has VCS coordinates of $\mathrm{P} 1=(-4,-5,7), \mathrm{P} 2=(0,-6,-10)$, $\mathrm{P} 3=(0,-4,-12)$ to the perspective viewing frustum given by bottom $=-1$, top $=1$, left $=-1$, right $=1$, near $=3$, $\mathrm{far}=9$. Show your intermediate results and use the following clipping order : top, bottom, left, right, near, far.
3. (a) Use the midpoint method and symmetry consideration to scan convert the parabola $x=y^{2}$ for the interval $|y| \leq \mid 0$.
(b) Consider three different raster systems with resolutions of $640 \times 480,1280 \times 1024$ and 2560×2048. What size frame buffer in kilo bytes is needed for each of these systems to store 24 bits per pixel? How long would it take to load a 1280×1024 frame buffer in the same system, if 104 bits can be transferred per second?
4. (a) For a polygon with the vertices $V_{0}=(10,20)$
$\mathrm{V}_{1}=(20,0), \mathrm{V}_{2}=(30,10), \mathrm{V}_{3}=(40,0)$, $\mathrm{V}_{4}=(40,40), \mathrm{V}_{5}=(30,30), \mathrm{V}_{6}=(20,40)$ and $\mathrm{V}_{7}=(30,20)$, prepare an initial sorted edge list and then make the active edge list for scan lines $y=5,20,30,35$.
(b) Write two difference each between :
(i) Parallel projection and perspective projection.
(ii) Shear transformation and composite transformation.
5. (a) Let $P(t)$ be a Bezier curve with control points
$P_{0}, P_{1}, \ldots, P_{n}$. Prove that
$\left|\mathrm{P}_{n}-\mathrm{P}_{0}\right| \leq \operatorname{arc}$ length $[\mathrm{P}(\mathrm{t})] \leq \sum_{k=0}^{n-1}\left|\mathrm{P}_{k+1}-\mathrm{P}_{k}\right|$.
(b) Transform the scene in the world coordinate
system to the viewing coordinate system with the view point at $(2,2,2)$. The view plane normal vector is $(-1,-1,-1)$ and the view up vector is $(0,1,0)$.
