M.A.C.S.

Term-End Examination

June, 2010
MMTE-003 : PATTERN RECOGNITION AND IMĀGE PROCESSING

Time : 2 hours
Maximum Marks : 50

Note: Attempt any five questions. All questions carry equal marks. Use of calculator is not allowed.

1. (a) Given an image with following histogram
($0,4,8,12,12,8,4,0$), apply equalization to it. What is the resulting histogram ?
(b) Obtain the histogram that results from applying histogram specification to the original image, given that the desired histogram is (12, 8, 4, 0, 0, 4, 8, 12).
2. (a) Obtain the Radon transform of 5 $f(x, y)=\mathrm{A} \exp \left(-x^{2}-y^{2}\right)$.
(b) Given that the Radon transform of 3 $f(x, y)=g(P, \theta)$ obtain the Radon transform of $f\left(x-x_{0} y-y_{0}\right)$
(c) Show that Radon transform is a linear 2 transform.
3. (a) Compute the Golomb Code $\mathrm{G}_{3}(\mathrm{n})$ for 5 $0 \leq n \leq 15$.
(b) Derive the Lloyd-Max decision and reconstruction levels for $L=4$ and the uniform probability density function :
$P(s)=\left\{\begin{array}{l}\frac{1}{2 A} ;-A \leq S \leq A . \\ 0 ; \text { otherwise }\end{array}\right.$
4. (a) Let $u=\left[u_{1}, u_{2}, 1\right]^{\mathrm{T}}$ and $v=\left[v_{1}, v_{2}, 1\right]^{\mathrm{T}}$ denote homogeneous coordinates of points in planes P and Q respectively. Matching pairs are related by a projection matrix :
$v_{i}=\mathrm{H} u_{i}, i=1,2, \ldots, \mathrm{n}$
A transform from P to Q in the form of translation by $\left(x_{0}, x_{1}\right)$ then a rotation by Θ, then a scaling by $\left(s_{0}, s_{1}\right)$ is described by the matrix
$\mathrm{H}=\left[\begin{array}{ccc}0.951623 & 0.443749 & -6.97686 \\ -0.401487 & 0.860992 & -2.29753 \\ 0 & 0 & 1\end{array}\right]$
Determine the values of ($x_{0}, x_{1}, s_{0}, s_{1}, \theta$).
(b) Explain the difference between forward and reverse map in Affine transform.
5. (a) Given salt and pepper noise with following pdf.
$\mathrm{P}(Z)=\left\{\begin{array}{cl}\mathrm{p}_{\mathrm{a}} & ; Z=-255 \\ \mathrm{p}_{\mathrm{b}} & ; Z=255 \\ 1-\left(\mathrm{p}_{\mathrm{a}}+\mathrm{p}_{\mathrm{b}}\right) & ; \quad Z=0\end{array}\right.$
(i) Obtain the mean and variance of this distribution.
(ii). Obtain the mean and variance for exponential distribution given as :
$P(Z)=\left\{\begin{array}{cc}\mathrm{ae}^{-a z} & ; Z \geqslant 0 \\ 0 & ; Z<0\end{array}\right.$
with $\mathrm{a}>0$.
(b) Briefly explain the methods for estimating 3 the degradation function.
6. (a) Explain the Canny Edge detector and clearly highlight its strength.
(b) (i) Explain the Global thresholding using Otsu's method.
(ii) Clearly state the steps involved in 2 Otsu's method.
7. (a) The following pattern classes have Gaussian
pdf. $\mathrm{W}_{1}:\left\{(0,0)^{\mathrm{T}},(2,0)^{\mathrm{T}},(2,2)^{\mathrm{T}},(0,2)^{\mathrm{T}}\right\} \&$
$\mathrm{W}_{2}=\left\{(4,4)^{\mathrm{T}},(6,4)^{\mathrm{T}},(6,6)^{\mathrm{T}},(4,6)^{\mathrm{T}}\right\}$
Assume $\mathrm{P}\left(\mathrm{W}_{1}\right)=\mathrm{P}\left(\mathrm{W}_{2}\right)=\frac{1}{2}$ obtain the equation of the Bayes decision boundary between the classes.
(b) Consider an image given in matrix form as 5 follows :
$h(m, n)=\delta(m, n)+\frac{1}{4}\{\delta(m-1, n)+$ $\delta(m+1, n)+\delta(m, n-1)+\delta(m, n+1)\}$
Assume image to be 0 , outside the window. Find the effect of applying the mask i.e. by filtering through the above system.
