No. of Printed Pages : 5

MMTE-001

, 00690	Term-End Examination June, 2010	
MMTE-001 : GRAPH THEORY		
Time : 2 h	nours Maximum Man	rks : 50
0 0	ut of question No. 2 to 7. Calculators are not a	illowed.
1. Prov	ve on disprove the following statements : 5	5x2=10
1. Prov (a)	ve on disprove the following statements : 5 If every vertex of a simple graph G ha degree 2, then G is a cycle.	5 x2=1 0 s
1. Prov (a) (b)	ve on disprove the following statements : 5 If every vertex of a simple graph G ha degree 2, then G is a cycle. Every bipartite graph need not be a tree.	5 x2=10 s
1. Prov (a) (b) (c)	ve on disprove the following statements : 5 If every vertex of a simple graph G ha degree 2, then G is a cycle. Every bipartite graph need not be a tree. The complete bipartite graph K _{3,4} i Eulerian.	5x2=10 s
 Prov (a) (b) (c) (d) 	 ve on disprove the following statements : 5 If every vertex of a simple graph G ha degree 2, then G is a cycle. Every bipartite graph need not be a tree. The complete bipartite graph K_{3,4} i Eulerian. Every edge cut is a disconnecting set. 	5x2=10 s s
 Prov (a) (b) (c) (d) (e) 	 ve on disprove the following statements : 5 If every vertex of a simple graph G hadegree 2, then G is a cycle. Every bipartite graph need not be a tree. The complete bipartite graph K_{3,4} i Eulerian. Every edge cut is a disconnecting set. Any simple graph with at least 4 vertices i 4 - colourable. 	5x2=10 s s

(b) Define isomorphism between graphs and the check whether the following two graphs are isomorphic :

- (c) State a necessary and sufficient condition 4
 for a graph to be bipartite. Prove the sufficiency of the condition.
- 3. (a) Check whether the sequence (4, 4, 4, 2, 2, 2) is a graphic sequence ? If yes provide a construction.
 2+1=3
 - (b) If G is an n-vertex connected graph that has 3 no cycles, prove that G has n-1 edges.
 - (c) Using Dijkstra's algorithm, find the shortest 4
 distance from vertex A to all the vertices in
 the following weighted graph.

MMTE-001

2

- (a) In the graph given below give the following 3with justification :
 - (i) A matching of maximum size
 - (ii) A vertex cover of minimum size
 - (iii) An independent set of vertices of maximum size.

(b) Find the minimum spanning tree in the 3 following connected weighted graph.

(c) If G is a simple graph, prove that 4 $k(G) \le k'(G)$ where k(G) is vertex connectivity of G, k'(G) is edge connectivity of G.

3

MMTE-001

+

4.

(a) Find the chromatic number X(h) to the 3 following graph.

(b) Show that for any graph G with n vertices 3

the chromatic number $X(G) \ge \frac{n(G)}{\alpha(G)}$ when

n(G) the clique number and $\alpha(G)$, the independence number.

- (c) State and prove Euler's formula for a planar 4 graph.
- 6. (a) Show that the graph formed by deleting one 3 edge from K_{33} is planar
 - (b) Use complete graphs and counting 3 arguments to prove that :

$$\binom{n}{2} + \binom{k}{2} + k(n-k) + \binom{n-k}{2}$$
 for $0 \le k \le n$.

4

MMTE-001

5.

(c) Find the adjacency and incidence matrices 4 of the following graph.

- 7. (a) State Dirac's Theorem for Halmiltonian 4 graph. Is the converse true ? Justify your answer.
 - (b) Prove that K_{33} is non-planar. 3
 - (c) Show that in a graph G, S ≤ V (G) is an 3 independent set if and only if V(G)\S is a vertex cover of G.

5

,