M.Sc. (Mathematics with Applications

 in Computer Science) (MACS)Term-End Examination

1
June, 2010
MMTE-001 : GRAPH THEORY
Time : 2 hours . Maximum Marks : 50

Note: Question No. 1 is compulsory. Do any four questions out of question No. 2 to 7. Calculators are not allowed.

1. Prove on disprove the following statements : $\mathbf{5 x 2}=\mathbf{1 0}$
(a) If every vertex of a simple graph G has degree 2 , then G is a cycle.
(b) Every bipartite graph need not be a tree.
(c) The complete bipartite graph $\mathrm{K}_{3,4}$ is Eulerian.
(d) Every edge cut is a disconnecting set.
(e) Any simple graph with at least 4 vertices is 4 - colourable.
2. (a) If u and v are the only vertices of odd degree in a graph G, prove that G contains a $u-v$ path.
(b) Define isomorphism between graphs and check whether the following two graphs are isomorphic :
G:

H:

(c) State a necessary and sufficient condition for a graph to be bipartite. Prove the sufficiency of the condition.
3. (a) Check whether the sequence $(4,4,4,2,2,2)$ is a graphic sequence? If yes provide a construction.
(b) If G is an n -vertex connected graph that has 3 no cycles, prove that G has $\mathrm{n}-1$ edges.
(c) Using Dijkstra's algorithm, find the shortest 4 distance from vertex A to all the vertices in the following weighted graph.

4. (a) In the graph given below give the following with justification :
(i) A matching of maximum size
(ii) A vertex cover of minimum size
(iii) An independent set of vertices of maximum size.

(b) Find the minimum spanning tree in the following connected weighted graph.

(c) If G is a simple graph, prove that
$\mathrm{k}(\mathrm{G}) \leq \mathrm{k}^{\prime}(\mathrm{G})$ where $\mathrm{k}(\mathrm{G})$ is vertex
connectivity of $\mathrm{G}, \mathrm{k}^{\prime}(\mathrm{G})$ is edge connectivity of G .
5. (a) Find the chromatic number $X(h)$ to the 3 following graph.

(b) Show that for any graph G with n vertices 3
the chromatic number $X(G) \geq \frac{n(G)}{\alpha(G)}$ when
$\mathrm{n}(\mathrm{G})$ the clique number and $\alpha(\mathrm{G})$, the independence number.
(c) State and prove Euler's formula for a planar 4 graph.
6. (a) Show that the graph formed by deleting one 3 edge from K_{33} is planar
(b) Use complete graphs and counting 3 arguments to prove that :
$\binom{\mathrm{n}}{2}+\binom{\mathrm{k}}{2}+\mathrm{k}(\mathrm{n}-\mathrm{k})+\left(\begin{array}{l}\left.\mathrm{n}-\mathbf{2}^{\mathrm{k}}\right) \text { for } 0 \leq \mathrm{k} \leq \mathrm{n} .\end{array}\right.$
(c) Find the adjacency and incidence matrices of the following graph.

7. (a) State Dirac's Theorem for Halmiltonian $\mathbf{4}$ graph. Is the converse true? Justify your answer.
(b) Prove that K_{33} is non-planar. 3
(c) Show that in a graph $\mathrm{G}, \mathrm{S} \leq \mathrm{V}(\mathrm{G})$ is an 3 independent set if and only if $V(G) \backslash S$ is a vertex cover of G.
