Master's in Mathematics with Applications in Computer Science
 M.Sc. (MACS)
 Term-End Examination
 June, 2010
 MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
Note: Question No. 1 is compulsory. Do any four questions out of question nos. 2 to 7 . All computations may be kept to 3 decimal places. Use of calculators is not allowed.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example : $\quad \mathbf{2 x 5}=\mathbf{1 0}$
(a) For the differential equation $x^{3} y^{\prime \prime}+x y^{\prime}+2 y=0, \quad x=0$ is a regular singular point.
(b) If $\mathrm{g}(x)$ is a polynomial of degree $\mathrm{k}<n$, then
$\int_{-1}^{1} \mathrm{~g}(x) \mathrm{P}_{n}(x) \mathrm{d} x=\frac{2}{2 \mathrm{n}+1}$,
where $\mathrm{P}_{\mathrm{n}}(x)$ is the Legendre polynomial.
(c) The inverse Fourier transform
$f^{-1}\left[\frac{1}{\alpha^{2}+2 \alpha+5}\right]=\frac{1}{4} \mathrm{e}^{-[2|x|+\mathrm{i} x]}$.
(d) The interval of absolute stability of the Runge-Kutta method
$Y_{\mathrm{i}+1}=y_{i}+\frac{1}{2}\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)$,
$\mathrm{k}_{1}=\mathrm{h} f\left(x_{i}, y_{i}\right), \mathrm{k}_{2}=\mathrm{h} f\left(x_{i}+\mathrm{h}, y_{i}+\mathrm{k}_{1}\right)$
is $-2<\lambda h<0$.
(e) The function $y(\mathrm{t})$ satisfying the integral equation $y(t)+\int_{0}^{t} y(z)(t-z) d z=t$, is y (t$)=$ sint.
2. (a) Using Laplace transform method solve the following simultaneous equations
$\frac{\mathrm{d} x}{\mathrm{dt}}+\frac{\mathrm{d} y}{\mathrm{dt}}=\mathrm{t}$
$\frac{\mathrm{d}^{2} x}{\mathrm{dt}^{2}}-y=\mathrm{e}^{-\mathrm{t}}$
Subject to conditions $x(0)=3, x^{1}(0)=-2$, $y(0)=0$.
(b) Derive the Fourier-Bessel series for $f(x)=x$, $0 \leq x \leq 1$, in terms of the functions $\mathrm{J}_{1}(\lambda \mathrm{n} x)$, where λ_{n} are the zeros of $\mathrm{J}_{1}(x)$.
3. (a) Find the power series solution, near $x=0$, of the differential equation.
$9 x(1-x) y^{\prime \prime}-12 y^{\prime}+4 y=0$.
(b) Derive the constants in the method

4
$y_{i+1}=\mathrm{a} y_{i+2}+\mathrm{h}\left(\mathrm{b}_{1} y^{\prime}{ }_{i}+\mathrm{b}_{2} y^{\prime}{ }_{i-1}+\right.$ $\mathrm{b}_{3} y^{\prime}{ }_{i-2}+\mathrm{b}_{4}{y^{\prime}}_{i-3}$) for the solution of $y^{\prime}=f(x, y)$. Determine also the truncation error and the order of the method.
4. (a) Solve the initial value problem
$y^{\prime}=x^{2}+\sqrt{y}+1, y(0)=1$
upto $x=0.6$, using the predictor-corrector method

$$
\begin{array}{ll}
\mathrm{P}: & y_{n+1}^{(\mathrm{p})}=y_{\mathrm{n}}+\frac{\mathrm{h}}{2}\left(f_{n}-f_{n-1}\right) \\
\mathrm{C}: & y_{n+1}^{(\mathrm{c})}=y_{\mathrm{n}}+\frac{\mathrm{h}}{12}\left[5 f \left(x_{\mathrm{n}+1}, y_{n+1}^{(\mathrm{p})}+8\right.\right. \\
& \left.f_{n}-f_{n-1}\right)
\end{array}
$$

with step length $\mathrm{h}=0.2$ compute the starting value using Euler's method and perform two corrector iterations per step.
(b) Evaluate $z\left[\mathrm{t}^{2} u(\mathrm{t}-3)\right]$, where u represents 3
5. (a) Find the solution of the initial, boundary value problem
$u_{t}=u_{x x^{\prime}} 0 \leq x \leq 1$,
$u(x, \mathrm{o})=\sin (2 \pi x), 0 \leq x \leq 1$,
$u(0, \mathrm{t})=0=u(1, \mathrm{t})$,
Using the Crank-Nicolson method with $\lambda=0.6$. Assume $h=1 / 3$. Integrate for one time level.
(b) Construct Green's function for the following boundary - value problem.

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+9 \mathrm{y}=0, y(0)=y(1)=0 .
$$

6. (a) Using generating function for Legendre polynomial $P_{n}(x)$, show that

$$
\frac{\mathrm{P}_{n+1}(x)-\mathrm{P}_{n-1}(x)}{2 n+1}=\mathrm{C}+\int \mathrm{P}_{n}(x) \mathrm{d} x
$$

Where C is a constant.
(b) Using Galerkin method with triangular elements and one internal node, find the solution of boundary value problem $\nabla^{2} u=0$ in R,
Where $u=x+y$, on the boundary. Take $\mathrm{h}=\frac{1}{2}$ and R is the square $0 \leq x \leq 1,0 \leq y \leq 1$.
7. (a) Solve the boundary value problem

$$
\begin{gathered}
\mathrm{y}^{\prime \prime}-5 y^{\prime}+4 y=0 \\
\mathrm{y}(0)-\mathrm{y}^{\prime}(0)=-1, \quad y(1)+y^{\prime}(1)=1
\end{gathered}
$$

Using second order finite differences for y^{\prime} and $y^{\prime \prime}$, with $h=1 / 2$.
(b) Evaluate $\int \mathrm{J}_{1}(x) \sin x \mathrm{~d} x$.

