MASTER'S IN MATHEMATICS WITH

 APPLICATIONS IN COMPUTER SCIENCE M.Sc.∞
N
1
0
0 (MACS)
Term-End Examination
June, 2010
MMT-005 : COMPLEX ANALYSIS
Time : $11 / 2$ hours Maximum Marks : 25
Note: Question No. 1 is compulsory. Attempt any three questions from question number 2 to 5. Use of calculator is not allowed.

1. State with reasons whether the following statements are true or false :
(a) Geometrically the set of all complex numbers z such that $z+\bar{z}=|z|^{2}$ represents a circle.
(b) Let $s=\{z:|z|<1$ or $|z-1|<1\}$ then s is a domain.
(c) $f(z)=\operatorname{sinz}$ is bounded in the complex plane.
(d) The zeros of $\cos \left(\frac{1}{z}\right)$ are isolated.
(e) The radius of convergence of the series

$$
\sum_{n=1}^{\infty} 2^{n} z^{n!} \text { is } 1
$$

2. (a) Show that the following function is not continuous at $z=0$.
$f(z)=\left\{\begin{array}{c}\frac{\operatorname{Re}(z)}{|z|}, z \neq 0 \\ 0, z=0\end{array}\right.$
(b) Show that $u(x, y)=x^{2}-y^{2}$ is harmonic in the whole plane. Find its harmonic conjugate and hence the associated analytic function.
3. (a) Evaluate $\int_{\mathrm{C}} \frac{4}{\left(4 z^{2}-1\right)} \mathrm{d} z$;
where C is the unit circle with Centre 1.
(b) Prove that the transformation $w=\frac{1}{z}$
transforms circles and lines into circles and lines. In particular, find the transformation of the line $y=1$ under the above transformation.
4. (a) Discuss the nature of singularities of
$f(z)=\frac{1}{z^{3} \sin z}$.
(b) Show that $\int_{-\infty}^{\infty} \frac{x^{2}}{1+x^{4}} \mathrm{~d} x=\frac{\pi}{\sqrt{2}}$.
5. (a) Prove that $Q(z)=\frac{2 z-1}{2-z}$ is a conformal
map which maps the closed unit disk
$\overline{\mathrm{D}}=\{z:|z| \leq 1\}$ onto itself.
(b) Evaluate $\int_{\mathrm{C}} \frac{\mathrm{e}^{z}}{(z-i)^{3}} \mathrm{~d} z$, where C is the 2
eight-like figure given below :

