No. of Printed Pages : $\mathbf{4}$

MASTER'S IN MATHEMATICS WITH

 APPLICATIONS IN COMPUTER SCIENCE
M.Sc. (MACS)

Term-End Examination

June, 2010
MMT-004 : REAL ANALYSIS
Time : 2 hours Maximum Marks: 50
Note: Question no. 1 is compulsory. Do any four questions out of questions no. 2 to 7. Calculators are not allowed.

1. State, whether the following statements are True or False. Give reasons to justify your answer : $2 \times 5=10$
(a) The set $\mathrm{F}:=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ is a closed set in \mathbf{R} with the discrete metric on it.
(b) Every Lehesgne integrable function on \mathbf{R} is Riemann integrable.
(c) Every convergent sequence in a metric space is a bounded sequence.
(d) If $\mathrm{A}=\left\{(x, y) \in \mathbf{R}^{2}: x^{2}+y^{2}=4\right\}$ then $\operatorname{int}(A)=\phi$.
(e) Function $f: \mathbf{R} \rightarrow \mathbf{R}^{2}$ defined by $f(x)=\left(f_{1}(x), f_{2}(x)\right)$

Where $f_{1}(x)=x, f_{2}(x)= \begin{cases}x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x=0),\end{cases}$ is not differentiable at $x=0$.
2. (a) State Faton's lemma. Show by an example
that the inequality in the lemma cannot be replaced by equality.
(b) Show that the system R_{1} given by $\mathrm{g}(\mathrm{t})=\left(\mathrm{R}_{1} \mathrm{f}\right)(\mathrm{t})=\mathrm{t} \mathrm{f}(\mathrm{t})$
is a time - varying system whereas the system R_{2} given by
$\mathrm{g}(\mathrm{t})=\left(\mathrm{R}_{2} \mathrm{f}\right)(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} f(\mathrm{t}) \mathrm{dt}$ is a time invariant system.
(c) Use the dominated convergence theorem to
find
$\lim _{\mathrm{n} \rightarrow \infty} \int_{1}^{\infty} \mathrm{fn}(x) \mathrm{d} x$
where $\mathrm{fn}(x)=\frac{n x}{1+n^{2} x^{2}}$
3. (a) Let $\left\{F_{n}\right\}$ be a sequence of non empty closed subsets of a complete metric space X such that $F_{n} \supseteq F_{n+1}$ for each positive integer n and $d\left(F_{n}\right) \rightarrow 0$. Let $F={ }_{n=1}^{\infty} F_{n}$. Then, prove that, F is a singleton set. Show by an example that the conclusion does not hold if X is not complete.
(b) If f is a linear map from \mathbf{R}^{n} to \mathbf{R}^{m}, then prove that, $\mathbf{f}^{\prime \prime}=0$.
4. (a) Define the outer measure m^{*} of any set
$A \subseteq \mathbf{R}$. For any subsets $A_{1}:, A_{2}$ of \mathbf{R}, show
that $m^{*}\left(A_{1} \cup A_{2}\right) \subseteq m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)$.
(b) Compute the Fourier series of the function g given by.
$g(t)=\left\{\begin{array}{rr}-2, & -\pi<t<0 \\ 2, & 0<t<\pi\end{array}\right.$
5. (a) Define the interior, closure and the boundary of any subset of a metric space. Find the interior, closure and boundary of the subset B of \mathbf{R}^{2} where,
$\mathrm{B}=\left\{(x, y) \in \mathbf{R}^{2}: x=0\right\}$.
(b) State the Inverse function theorem for vector-valued functions. Show that the function $f: \mathbf{R}^{4} \rightarrow \mathbf{R}^{4}$ defined by
$\mathrm{f}(x, y, z, w)=\left(x+2 y, x^{2}-y^{2}, w z, y+w\right)$ is locally invertible at the point $(0,1,-1,2)$.
6. (a) Let $\{\mathrm{fn}\}$ be a sequence of measurable
functions on \mathbf{R} such that $\sum_{n=1}^{\infty} \int|\mathrm{fn}| \mathrm{dm}<\infty$.
Show that the series $\sum_{n=1}^{\infty} \mathrm{fn}(x)$ converges for almost all x and its sum is integrable. Further show that

$$
\int \sum_{n=1}^{\infty} \mathrm{fn} \mathrm{dm}=\sum_{n=1}^{\infty} \int \mathrm{fn} \mathrm{dm}
$$

(b) If a set E has finite measure (i.e. $\mathrm{m}(\mathrm{E})<\infty$) then, show that, $\mathrm{L}^{2}(\mathrm{E}) \subset \mathrm{L}^{1}(\mathrm{E})$.
(c) Let $X=\mathbf{R}^{2}$ with the discrete metric d . Then,
show that, the sequence $\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right\}_{n=1}^{\infty}$ does
not converge to $(0,0)$.
7. (a) Let A and B be two disjoint non-empty closed sets of a metric space X. Prove that there exists a continuous function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{R}$ such that $0 \leq f \leq 1, f=0$ on A and $f=1$ on B.
(b) Show that a convex set in R^{n} is path connected.
(c) Give an open cover for \mathbf{R} which does not have a finite subcover. What can you say about the compactness of \mathbf{R} ? Justify your answer.

