	No. of Prin	ted Pages : 4	MMT-004	
	MASTER'S IN MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE M.Sc. (MACS)			
00338	Term-End Examination June, 2010			
	MMT-004 : REAL ANALYSIS			
	Time : 2 ho	urs	Maximum Marks : 50	
	Note: Qu	uestion no. 1 is compulsory.	Do any four questions	
	out of questions no. 2 to 7. Calculators are not allowed.			
	 State, whether the following statements are <i>True</i> or <i>False</i>. Give reasons to justify your answer : 2x5=10 			
	(a)	The set $F := \{1, \frac{1}{2}, \frac{1}{3},\}$ is		
		with the discrete metric or	ı it.	
	(b)	Every Lehesgne integrable Riemann integrable.	function on R is	
	(c)	Every convergent sequence is a bounded sequence.	in a metric space	
	(d)	If $A = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{R}^2 : x \in \mathbb{R}^2\}$ int $(A) = \phi$.	$y^2 + y^2 = 4$ then	
	(e)	Function $f: \mathbf{R} \rightarrow \mathbf{R}^2$ defined	l by	
		$f(x) = (f_1(x), f_2(x))$		
•		Where $f_1(x) = x$, $f_2(x) = \begin{cases} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
	NANAT 004	1	Р.Т.О.	
	MMT-004	1	r.1.0.	

- 2. (a) State Faton's lemma. Show by an example 3 that the inequality in the lemma cannot be replaced by equality.
 - (b) Show that the system R_1 given by 4 g(t) = (R_1 f)(t) = t f(t)

is a time - varying system whereas the system R_2 given by

g (t) = (R₂f) (t) =
$$\int_{-\infty}^{t} f(t) dt$$
 is a time invariant system.

(c) Use the dominated convergence theorem to 3 find

$$\lim_{n\to\infty}\int_1^\infty \mathrm{fn}(x)\mathrm{d}x$$

where fn (x) =
$$\frac{n x}{1 + n^2 x^2}$$

-3. (a) Let $\{F_n\}$ be a sequence of non empty closed 6 subsets of a complete metric space X such that $F_n \supseteq F_{n+1}$ for each positive integer n

and d (F_n) $\rightarrow 0$. Let $F = \bigcap_{n=1}^{\infty} F_n$. Then, prove

that, F is a singleton set. Show by an example that the conclusion does not hold if X is not complete.

(b) If f is a linear map from \mathbb{R}^n to \mathbb{R}^m , then prove 4 that, $\mathbf{f}'' = 0$.

MMT-004

2

- 4. (a) Define the outer measure m^* of any set 5 $A \subseteq \mathbf{R}$. For any subsets $A_1 :$, A_2 of \mathbf{R} , show that $m^* (A_1 \cup A_2) \subseteq m^* (A_1) + m^* (A_2)$.
 - (b) Compute the Fourier series of the function 5 g given by.

$$g(t) = \begin{cases} -2, & -\pi < t < 0 \\ 2, & 0 < t < \pi \end{cases}$$

- 5. (a) Define the interior, closure and the 6 boundary of any subset of a metric space. Find the interior, closure and boundary of the subset B of \mathbf{R}^2 where, $B = \{(x, y) \in \mathbf{R}^2 : x = 0\}.$
 - (b) State the Inverse function theorem for 4 vector-valued functions. Show that the function $f : \mathbf{R}^4 \rightarrow \mathbf{R}^4$ defined by $f(x, y, z, w) = (x+2y, x^2-y^2, wz, y+w)$ is locally invertible at the point (0, 1, -1, 2).
- 6. (a) Let {fn} be a sequence of measurable 4

functions on **R** such that $\sum_{n=1}^{\infty} \int |f_n| \, dm < \infty$.

Show that the series $\sum_{n=1}^{\infty} \text{fn}(x)$ converges for almost all x and its sum is integrable. Further show that

$$\int_{n=1}^{\infty} \operatorname{fn} d\mathbf{m} = \sum_{n=1}^{\infty} \int \operatorname{fn} d\mathbf{m}$$

3

MMT-004

- (b) If a set E has finite measure (i.e. m (E)< ∞) 3 then, show that, L² (E) \subset L¹ (E).
- (c) Let $X = \mathbf{R}^2$ with the discrete metric d. Then, 3

show that, the sequence
$$\left\{ \left(\frac{1}{n}, \frac{1}{n}\right) \right\}_{n=1}^{\infty}$$
 does

not converge to (0, 0).

- 7. (a) Let A and B be two disjoint non-empty 5 closed sets of a metric space X. Prove that there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $0 \le f \le 1$, f=0 on A and f=1 on B.
 - (b) Show that a convex set in **R**ⁿ is path 2 connected.

3

(c) Give an open cover for **R** which does not have a finite subcover. What can you say about the compactness of **R** ? Justify your answer.