No. of Printed Pages : 3

MMT-003

MASTER'S IN MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE M.Sc. (MACS) Term-End Examination June, 2010

MMT-003 : ALGEBRA

Time : 2	2 hours Maximum	Marks : 50
Note :	Question No. 1 is compulsory . Answer questions from Q. No. 2 to Q. No. 6 . Use of is not allowed.	

- Which of the following statements are *true* and 10 which are *false*? Give reasons for your answer :
 - (a) The dihedral group D_4 has five elements of order two.
 - (b) In a group of odd order, the number of conjugacy classes is also odd.
 - (c) A free group on two generators has sub groups of order n. for every positive integer n.
 - (d) Z_4 is the unique field with 4 elements.
 - (e) A finite group of order 12 can have a irreducible representation of degree 3 or degree 4, but not both.

MMT-003 1 P.T.O.

- 2. (a) Show that, upto isomorphism, there is a 4 unique group of order 33.
 - (b) Let *H* be the group of quarternions 4 $\{\pm 1, \pm i, \pm j, \pm k\}$ show that, $P: H \rightarrow GL_2(C)$ defined by

$$\mathbf{P}(i) = \begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix}, \ \mathbf{P}(j) = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}, \ \mathbf{P}(k) = \begin{pmatrix} 0 & i\\ i & 0 \end{pmatrix}$$

is a group representation. Find the character of p and hence check that it is an irreducible representation.

- (c) For a finite field F of 11 elements show that **2** $F\left[\sqrt{5}\right]$ and $F\left[\sqrt{7}\right]$ are not the same.
- 3. (a) Let α , β be complex numbers. Prove that, if **4** $\alpha + \beta$ and $\alpha \beta$ are algebraic numbers, then α and β are also algebraic.
 - (b) For a matrix $A \in SU_2$, if the entry a_{11} is a 3 complex number of modulus 1, then show that $a_{12} = 0$.
 - (c) Find two elements of order 2 in the dihedral 3 group D_4 such that they generate D_4 .
- 4. (a) Find all the irreducible representations of S_3 . 4
 - (b) Show that the sylow 2-subgroup of the 6 dihedral group D_6 is the Klein group.

MMT-003

2

- 5. (a) Let G be a free group on n generators, n>1. 4
 Show that there are infinitely many subgroups of G which are again free on n generations.
 - (b) Show that the polynomial $x^3 + 2x + 1$ over **2** the finite field **F**₃ is irreducible.
 - (c) Show that a finite group with exactly 2 4 conjugacy classes is of order 2.
- 6. (a) Let ρ he a representation of a finite group 6 G on a complex vector space V. Show that there exists a positive definite, hermitian form < \cdot > on V such that <v, w> = < $e_g(v)$, $e_g(w)$ > for v, $w \in V$ and geh where $\rho_g(v) = (\rho(g))(v)$.
 - (b) If $\rho \in SO_3(\mathbf{R})$, show that 1 is an eigen value **4** of ρ .
- 7. (a) What are the possible degrees of irreducible 3 polynomials that divide $x^{64} x \in F_2[x]$? Justify your answer.
 - (b) Let N = {1, (1 2 3), (1 3 2)} be the normal 3 subgroup of S₃. Find the character of the representation *ρ* obtained by the action of S₃ on N by conjugation.
 - (c) Prove that two elements a, b of a group 2 generate the same subgroup as bab^2 and bab^3 .

(d) Show that $i \notin Q(\sqrt{2})$.

3

2