MASTER'S IN MATHEMATICS WITH

APPLICATIONS IN COMPUTER SCIENCE

M.Sc. (MACS)

Term-End Examination
June, 2010
MMT-003 : ALGEBRA
Time : 2 hours Maximum Marks : 50
Note: Question No. 1 is compulsory. Answer any four questions from Q. No. 2 to Q. No. 6. Use of calculators is not allowed.

1. Which of the following statements are true and $\mathbf{1 0}$ which are false? Give reasons for your answer :
(a) The dihedral group D_{4} has five elements of order two.
(b) In a group of odd order, the number of conjugacy classes is also odd.
(c) A free group on two generators has sub groups of order n. for every positive integer n.
(d) Z_{4} is the unique field with 4 elements.
(e) A finite group of order 12 can have a irreducible representation of degree 3 or degree 4, but not both.
2. (a) Show that, upto isomorphism, there is a
unique group of order 33 .
(b) Let H be the group of quarternions

4
$\{ \pm 1, \pm i, \quad \pm \mathrm{j}, \pm \mathrm{k}\}$ show that,
$P: H \rightarrow \mathrm{GL}_{2}(C)$ defined by
$\mathrm{P}(i)=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), \mathrm{P}(\mathrm{j})=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \mathrm{P}(\mathrm{k})=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$
is a group representation. Find the character of p and hence check that it is an irreducible representation.
(c) For a finite field F of 11 elements show that
$\mathrm{F}[\sqrt{5}]$ and $\mathrm{F}[\sqrt{7}]$ are not the same.
3. (a) Let α, β be complex numbers. Prove that, if $\alpha+\beta$ and $\alpha \beta$ are algebraic numbers, then α and β are also algebraic.
(b) For a matrix $A \in S U_{2}$, if the entry a_{11} is a complex number of modulus 1 , then show that $\mathrm{a}_{12}=0$.
(c) Find two elements of order 2 in the dihedral 3 group D_{4} such that they generate D_{4}.
4. (a) Find all the irreducible representations of S_{3}.
(b) Show that the sylow 2-subgroup of the 6 dihedral group D_{6} is the Klein group.
5. (a) Let G be a free group on n generators, $\mathrm{n}>1$.

4 Show that there are infinitely many subgroups of G which are again free on n generations.
(b) Show that the polynomial $x^{3}+2 x+1$ over the finite field \mathbf{F}_{3} is irreducible.
(c) Show that a finite group with exactly 2 conjugacy classes is of order 2.
6. (a) Let ρ he a representation of a finite group G on a complex vector space V. Show that there exists a positive definite, hermitian form \langle, \rangle on V such that $\langle v, w\rangle=$ $<\mathrm{e}_{\mathrm{g}}(v), \mathrm{e}_{\mathrm{g}}(w)>$ for $v, w \in \mathrm{~V}$ and $\mathrm{g} \epsilon \mathrm{h}$ where $\rho_{\mathrm{g}}(v)=(\rho(g))(v)$.
(b) If $\rho \in \mathrm{SO}_{3}(\mathbf{R})$, show that 1 is an eigen value of ρ.
7. (a) What are the possible degrees of irreducible polynomials that divide $x^{64}-x \in \mathrm{~F}_{2}[x]$? Justify your answer.
(b) Let $\mathrm{N}=\left\{\begin{array}{l}\left.1,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\} \text { be the normal }\end{array}\right.$ subgroup of S_{3}. Find the character of the representation ρ obtained by the action of S_{3} on N by conjugation.
(c) Prove that two elements a, b of a group generate the same subgroup as $b a b^{2}$ and $b a b^{3}$.
(d) Show that $\mathrm{i} \notin \mathrm{Q}(\sqrt{2})$.

