BACHELOR'S DEGREE PROGRAMME

\pm Term-End Examination
 $\underset{\sim}{\infty}$ June, 2010
 - (APPLICATION ORIENTED COURSE)
 AOR-1 : OPERATIONS RESEARCH

Time : 2 hours
Maximum Marks : 50
Note: Attempt five questions in all. Question no. 1 is compulsory. Do any four questions out of questions no. 2 to 7. Calculators are not allowed.

1. Which of the following statements are true and which are false? Give reasons for your answer :
(a) The union of any two convex sets is convex.
(b) The following project network has a unique critical path :
$5 \times 2=10$

(c) For each cell (i, j) in an optimal solution to a transportation problem the value $\left(u_{i}+v_{j}-c_{i j}\right) x_{i j}=0$
(d) The optimal value of the dual of the following LPP is 24 :
$\operatorname{Max} 4 x_{1}+3 x_{2}$
Such that $x_{1}+x_{2} \leq 8$
$x_{1}, x_{2} \geqslant 0$
(e) In a single server queueing system, if the mean arrival rate is 2 per hour and the mean service rate 3 per hour, the system will reach the steady state.
2. (a) A company has two grades of inspectors 1, and 2, who are to be assigned for a quality control inspection. It is required that atleast 2,000 pieces be inspected in a working day of 8 hours. Grade I inspector can check pieces at the rate of 40 per hour, with an accuracy of 97 percent. Grade II inspector can check pieces at the rate of 30 pieces per hour with an accuracy of 95 percent.
The wage rate of a Grade I inspector is Rs. 5/- per hour while that of a Grade 2 inspector is Rs. 4 per hour. An error made by an inspector costs Rs. 3 to the company. There are only nine Grade I inspectors and eleven Grade 2 inspectors available in the company. The company wishes to assign work to the available inspectors so as to minimize the total cost of inspection. Formulate this problem as an LPP.
(b) Six jobs first go over machine 1 and then
over machine 2. Processing times in hours are given as follows :

JOB	A	B	C	D	E	F
Machine 1	5	1	9	3	10	7
Machine 2	2	6	7	8	4	5

Find the optimum sequence in which jobs should be processed, explaining the steps of the procedure adopted.
3. (a) A company has three coal mines that supply coal to three steel plants. The monthly production capacity of the coal mines and the monthly requirements of the steel plants are as follows :

Mine	Capacity			
1	14 tons			
2	12 tons			
3	5 tons	\quad	Plant	Requirement
:---:	:---	:---		
1	6 tons			
2	10 tons			
3	15 tons			

Unit transportation costs from the coal mines to the steel plants are as follows:

	P_{1}	P_{2}	P_{3}
M_{1}	6	8	4
	M_{2}	4	9
M_{3}	3		
	1	2	6

Obtain an initial basic feasible solution for
the problem by Vogel's approximation method. Use the solution to find the optimum transportation schedule that minimises the transportation cost.
(b) There is a congestion on the platform of a railway station. The trains arrive at the rate of 30 trains per day. The waiting time for any train to enter the plat form is exponentially distributed with an average of 36 minutes. Calculate the following :
(i) The mean queue size.
(ii) The probability that queue size exceeds 9 .
4. (a) Listed in the table below are the activities and sequencing requirements necessary for the completion of a project.

Activity	Predecessor	Duration in weeks
A	-	6
B	A	24
C	A	6
D	A	12
E	A	9
F	C, D, E	18
G	B,F	12
H	G	24

(i) Draw a net work diagram for the project.
(ii) Find the critical path and the duration for the completion of the project.
(b) Write the dual of the following LP problem :

Min. $Z=3 x_{1}-2 x_{2}+4 x_{3}$
Subject to

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}+4 x_{3} \geqslant 7 \\
& 6 x_{1}+x_{2}+3 x_{3}=4 \\
& 7 x_{1}-2 x_{2}-x_{3} \leq 10 \\
& x_{1}, x_{2}, x_{3} \geqslant 0
\end{aligned}
$$

5. (a) Use the dual simplex method to solve the 5 following L.P.P.
$\operatorname{Max} \mathrm{Z}=-2 x_{1}-x_{3}$
Subject to
$x_{1}+x_{2}-x_{3} \geqslant 5$
$x_{1}-2 x_{2}+4 x_{3} \geqslant 8$
$x_{1}, x_{2}, x_{3} \geqslant 0$.
(b) Solve the following cost minimising 5 assignment problem.

	I	II	III	IV	V
A	2	9	2	7	1
B	6	8	7	6	1
C	4	6	5	3	1
D	4	2	7	3	1
E	5	3	9	5	1

6. (a) An investment company wants to study the investment proposals based on the profit factor. While analysing a new investment proposal, the company estimated the probability distribution for the profit as follows :

Profit (in thousands)	3	5	7	9	10
Probability	0.1	0.2	0.4	0.2	0.1

Using the random numbers :
19, 7, 90, 2, 57, 28
Simulate the profit of the company for six trials.
(b) The production department for a company 5 requires $3,600 \mathrm{~kg}$ of raw material for manufacturing a particular item per year. It has been estimated that the cost of placing an order is Rs. 36 and the cost of carrying inventory is 25 percent of the investment in the inventories. The price of the raw material is Rs. 10 per kg .
Determine the following :
(i) Economic order quantity
(ii) Optimal order cycle time and
(iii) Minimum yearly inventory cost.
7. (a) Find the shortest route in the following map:

(b) For air ticket booking, there are two counters for customers. The customers arrive in poisson fashion at an average rate of 9 per hour. The service time for booking clerks at both the counters are exponentially distributed with mean time of 15 minutes. The counters remain open for 8 hours per day.
(i) Find the hours of the day for which both the clerks are busy.
(ii) Find the expected waiting time of customer in the queue.

स्नातक उपाधि कार्यक्रम

सत्रांत परीक्षा
जून, 2010
(व्यवहारमूलक पाठ्यक्रम)
ए.ओ.आर.-1 : संक्रिया विज्ञान
समय : 2 घण्टे अधिकतम अंक : 50
नोट : कुल पाँच प्रश्नों के उत्तर दीजिए। प्रश्न सं. 1 करना अनिवार्य है। प्रश्न स. 2 से 7 में से किन्हीं चारार प्रश्नों के उत्तर दीजिए। कैल्कुलेटर का प्रयोग करने की अनुमाति नहीं है।

1. निम्नलिखित में से कौन-से कथन सत्य और कौन से असत्य 10 हैं ? अपने उत्तर के कारण बताइए।
(a) किन्हीं दो अवमुख समुच्चयों का सम्मिलन अवमुख होता है।
(b) निम्नलिखित परियोजना नैटवर्क में एक अद्वितीय क्रांतिक पथ है :

(c) परिवहन समस्या के इष्टतम हल में प्रत्येक कोष्ठिका
(i, j) के लिए मान $\left(u_{i}+v_{j}-c_{i j}\right) x_{i j}=0$.
(d) निम्नलिखित LPP की द्वैती का इष्टतम मान 24 है :
$4 x_{1}+3 x_{2}$ का अधिकतमीकरण कीजिए
जबकि $x_{1}+x_{2} \leq 8$
$x_{1}, x_{2} \geqslant 0$
(e) एकल सर्वर पंक्ति प्रणाली में यदि माध्य आगमन दर 2 प्रति घंटा और माध्य सेवा दर 3 प्रति घंटा है तब प्रणाली अपरिवर्ती अवस्था में पहुँचेगी।
2. (a) एक कम्पनी में दो ग्रेड के इंस्पेक्टर हैं-इंस्पेक्टर 1 और इंस्पेक्टर 2 , जिन्हें गुणवत्ता नियंत्रण की जाँच का काम सौंपा जाना है। उन्हें प्रतिदिन 8 घंटे में कम से कम 2,000 वस्तुओं की जाँच करनी होती है। इंस्पेक्टर 1 97% परिशुद्धता के साथ एक घंटे में 40 वस्तुओं की जाँच कर सकता है और इंस्पेक्टर 295% परिशुद्धता के साथ एक घंटे में 30 वस्तुओं की जाँच कर सकता है। ग्रेड 1 वाले इंस्पेक्टर की मजजदूरी दर 5 रु. प्रति घंटा है जबकि ग्रेड 2 इंस्पेक्टर की मजदूरी दर 4 रु. प्रति घंटा है। एक इंस्पेक्टर द्वारा की गई एक गलती की कीमत कम्पनी को उस 3 रु. पड़ती है। कम्पनी में ग्रेड 1 के केवल नौ और ग्रेड 2 मे ग्यारह इंस्पेक्टर हैं। कम्पनी इन्सपेक्टरों को इस तरह काम सौंपना चाहती है जिससे कि जाँच की कुल लागत को न्यूनतम किया जा सके। इस समस्या को LPP के रूप में सूत्रित कीजिए।
(b) छह कार्य हैं जो पहले मशीन 1 और फिर मशीन 2 पर

किए जाते हैं। प्रक्रम समय (घंटों में) निम्नलिखित है :

कार्य	A	B	C	D	E	F
मशीन 1	5	1	9	3	10	7
मशीन 2	2	6	7	8	4	5

अपनाई गई क्रिया विधि के चरणों को स्पष्ट करते हुए कार्यों का इष्टतम अनुक्रम ज्ञात कीजिए।
3. (a) एक कम्पनी में कोयले की तीन खाने हैं जो स्टील के

तीन संयंत्रों को कोयले की आपूर्ति करती है। कोयला खानों की मासिक उत्पादन क्षमता और स्टील संयंत्रों की मासिक आवश्यकताएँ निम्नलिखित है :

खान	क्षमता
1	14 टन
2	12 टन
3	5 टन

संयंत्र	आवश्यकता
1	6 टन
2	10 टन
3	15 टन

कोयला खानों से स्टील संयंत्रों तक की इकाई परिवहन लागते इस प्रकार है :

	${ }^{c} \mathrm{P}_{1}$	P_{2}	P_{3}
M_{1}	6	8	4
M_{2}	4	9	3
M_{3}	1	2	6

वोगल सत्रिकटन विधि से समस्या का प्रारंभिक आधारी

सुसंगत हल प्राप्त कीजिए। परिवहन लागत को न्यूनतम करने वाली इष्टतम परिवहन अनुसूची ज्ञात करने के लिए हल का प्रयोग कीजिए।
(b) एक रेलवे स्टेशन के प्लेटफार्म पर बहुत भीड़-भाड़ है। प्रति दिन 30 गाड़ियाँ प्लेटफार्म पर जाती हैं। प्लेटफार्म पर किसी भी गाड़ी के प्रवेश करने का प्रतीक्षा समय चरघांताकीय बंटित है जिसकी औसत 36 मिनट है। निम्नलिखित परिकलित कीजिए :
(i) माध्य पंक्ति आकार।
(ii) यह प्रायिकता कि पंक्ति आकार 9 से अधिक होगा।
4. (a) निम्नलिखित तालिका में एक परियोजना को पूरा करने के लिए अनिवार्य गतिविधियां और अनुक्रमण आवश्यकताएँ दी गई हैं :

गतिविधि	पूर्ववर्ती	अवधि (सप्ताह में)
A	-	6
B	A	24
C	A	6
D	A	12
E	A	9
F	C,D,E	18
G	B, F	12
H	G	24

(i) परियोजना का नेटवर्क आरेख बनाइए।
(ii) परियोजना का क्रांतिक पथ और उसे पूरा करने की अवधि ज्ञात कीजिए।
(b) निम्नलिखित LPP की द्वैती लिखिए :
$\mathrm{Z}=3 x_{1}-2 x_{2}+4 x_{3}$ का न्यूनतमीकरण कीजिए,
जबकि
$3 x_{1}+5 x_{2}+4 x_{3} \geqslant 7$
$6 x_{1}+x_{2}+3 x_{3}=4$
$7 x_{1}-2 x_{2}-x_{3} \leq 10$
$x_{1}, x_{2}, x_{3} \geqslant 0$.
5. (a) निम्नलिखित L.P.P. को द्वैती एकधा-विधि से हल 5

कीजिए :
$\mathrm{Z}=-2 x_{1}-x_{3}$ का अधिकतमीकरण कीजिए।
जबकि
$x_{1}+x_{2}-x_{3} \geqslant 5$
$x_{1}-2 x_{2}+4 x_{3} \geqslant 8$
$x_{1}, x_{2}, x_{3} \geqslant 0$.
(b) निम्नलिखित लागत न्यूनतमकारी नियतन समस्या को 5

हल कीजिए :

	I	II	III	IV	V
A	2	9	2	7	1
B	6	8	7	6	1
C	4	6	5	3	1
D	4	2	7	3	1
E	5	3	9	5	1

6. (a) एक निवेश कम्पनी लाभ कारक के आधार पर निवेश प्रस्तावों का अध्ययन करना चाहती है। नए निवेश प्रस्ताव का विश्लेषण करने में कम्पनी ने लाभ के लिए निम्नानुसार प्रायिकता बंरन आकलित किया।

लाभ (हजारों में)	3	5	7	9	10
प्रायिकता	0.1	0.2	0.4	0.2	0.1

यादृच्छिक संख्याओं
$19,7,90,2,57,28$ का प्रयोग करते हुए छह प्रयामों के लिए कम्पनी के लाभ का अनुकरण कीजिए।
(b) एक कम्पनी के उत्पादन विभाग को किसी विशेष वस्तु 5 के विनिर्माण के लिए प्रति वर्ष 3,600 कि.ग्रा. कच्ची सामग्री की आवश्यकता है। यह अनुमान लगाया गया कि आर्डर देने की कीमत 36 रु. और माल सूची की धारण लागत मालसूचियों में निवेश की 25% है। कच्चे माल की कीमत 10 रु. प्रति कि.ग्रा. है।

निम्नलिखित निर्धारित कीजिए :
(i) आर्थिक आर्डर मात्रा
(ii) इष्टतम आर्डर चक्र समय और
(iii) न्यूनतम वार्षिक मालसूची लागत
7. (a) निम्नलिखित नक्शे में लघुतम मार्ग ज्ञात कीजिए :

(b) हवाई जहाज की टिकट की बुकिंग के लिए यात्रियों हेतु 5 दो काउंटर हैं। यात्री प्रति घंटा 9 की औसत दर से प्वांसा बंटन में आते हैं। दोनों काउंटरों पर बुकिंग क्लर्क के लिए सेवा काल चरघातांकीय बंटित है, जिसका माध्य समय 15 मिनट है। काउंटर प्रतिदिन 8 घंटे खुले रहते हैं।
(i) दिन के वे घंटे ज्ञात कीजिए जिनमें दोनों क्लर्क व्यस्त रहते हैं।
(ii) यात्री का पंक्ति में प्रत्याशित प्रतीक्षा समय ज्ञात कीजिए।

