00134

DIPLOMA IN MECHANICAL ENGINEERING

Term-End Examination June, 2010

BME-050: ENGINEERING MATERIALS

Time: 2 hours

Maximum Marks: 70

Note: Question number 1 is compulsory. Attempt any four more questions out of the remaining questions numbered 2 to 6. Use of calculator is permitted.

- Select the correct answer from the given alternatives for each part given below: 14x1=14
 - (a) Higher the percentage deformation in the material leads to :
 - (i) Less ductile
 - (ii) More ductile
 - (iii) No change in ductility
 - (iv) None of the above

BME-050

1

P.T.O.

(b)		maximum elastic energy per unit
		ining plastic state is known as
	(i)	Modulus of toughness
	(ii)	Modulus of rigidity
	(iii)	Modulus of resilience
	(iv)	Bulk modulus
(c)	Test	s that are performed in a universal
	testi	ng machine is
	(i)	Tension test
	(ii)	Compression
	(iii)	All of the above
	(iv)	None of the above
d)	The	mass of hammer in charpy machine is
	distr	ributed in plane.
	(i)	Horizontal
	(ii)	Vertical
	(iii)	Circular
	(iv)	All of the above
e)	Abil	ity of material to resist abrasian cutting
	or j	penetration is also attributed to
	(i)	Brittleness
	(ii)	Softness
	(iii)	Hardness
	(iv)	None of the above

The principal iron ores are		
(i)	taconite	
(ii)	hematite	
(iii)	above (i) and (ii)	
(iv)	None of the above	
The highest temperature generated in electric arc furnace is		
(i)	1000°C	
(ii)	1500°C	
(iii)	1925°C	
(iv)	2025°C	
Ceramics are basically inorganic crystalline materials characterised by		
(i)	low ductility and high melting point	
(ii)	high ductility and low melting point	
(iii)	low ductility and low melting point	
(iv)	high ductility and high melting point	
Carborundum, a well known abrassive material and its formula is		
(i)	Al_2O_3	
(ii)	MgO	
(iii)	SiC	
(iv)	K ₂ O	
	(i) (ii) (iii) (iv) The elect (i) (iii) (iv) Cera mate (i) (iii) (iv) Carl mate (i) (iii) (iii) (iii) (iii)	

	is a commercial term used to	
des	signate a process by which zinc coating	
is p	produced on iron or low carbon steel.	
(i)	Electroplating	
(ii)	Galvanizing	
(iii)	Hot dipping	
(iv)	Calorising	
	covers all aspects of this	
tec	hnology including friction, bearing	
des	ign, lubrication systems and wear.	
(i)	Annealing	
(ii)	Coating	
(iii)	Powder metallurgy	
(iv)	Tribology	
Αı	eaction in which a complex molecule is	
for	med from a number of simpler molecules	
tha	t can be alike or unlike is known as	
(i)	Polymerisation	
(ii)	Deformation	
(iii)	Lubrication	
(iv)	Thermosetting	
In	concrete, the ultimate compressive	
strength is about times its		
ultimate tensile strength.		
(i)	5	
(ii)	10	
(iii)	15	
(iv)	20	

(n)	The instantaneous applied load divided by
	the instantaneous cross-sectional area of
	specimen is

- (i) shear strain
- (ii) shear stress
- (iii) true strain
- (iv) true stress
- (a) Distinguish between a ductile and a brittle material. Give examples of ductile and brittle materials.
 - (b) Describe the procedure for finding Rockwell hardness.
- 3. (a) Describe the process of steel making with direct arc electric furnace. 2x7=14
 - (b) What are the distinguish features of eutectoid, hypo-eutectoid and hyper eutectoid steels?
- 4. (a) What is stainless steel? Mention those properties which distinguish stainless steel from plain carbon steel. 2x7=14
 - (b) Define thermal conductivity. Give units of thermal conductivity. Explain mechanism of thermal conduction through materials.

- 5. (a) Define refractoriness. List at least five refractory materials. Describe the properties of refractory materials.
 - (b) What is a glass? What are different types of glasses? What are tailor made glass properties?
- 6. (a) Define the term lubricant and describe the functions of lubricants. 2x7=14
 - (b) Define the term coating. What are the purposes of coatings? Explain.