No. of Printed Pages : 6

BET-021

Diploma in Civil Engineering / Diploma in Electrical and Mechanical Engineering

Term-End Examination

വ

 \leftarrow

037

June, 2010

BET-021 : MATHEMATICS-II

Time : 2 hours Maximum Marks :			
Note :	Question number 1 is comp questions out of the rem calculator is permitted.	o ulsory . Attempt a aining questions.	ny four Use of

1. (A) Select the correct answer from the **four** given alternatives : 7x1=7

(a)
$$\int \tan^{-1} \left(\frac{\sin 2x}{1 + \cos 2x} \right) dx$$
 is

(i) 1

(ii) x + c

- (iii) $\log(1+\cos 2x)$
- (iv) $\log (1 + \cos 2x) + c$

1

BET-021

(b)
$$\frac{d}{dx} \left[\cos (\log x) \right] \text{ is}$$
(i) $\sin (\log x)$
(ii) $-\sin (\log x)$
(iii) $-\sin (\log x)$. $\frac{1}{x}$
(iv) $\sin (\log x)$. $\frac{1}{x}$
(iv) $\sin (\log x)$. $\frac{1}{x}$
(c) if $f(x) = \cos x$ and $0 < x < \pi$ then $f(x)$ is
(i) decreasing function
(ii) increasing function
(iii) strictly decreasing function
(iv) none of these
(d) if Z_1 and Z_2 are two complex numbers, then
 $|Z_1 + Z_2|$ is:
(i) $\geq |Z_1| - |Z_2|$
(ii) $\leq |Z_1| + |Z_2|$
(iii) $\geq |Z_1| + |Z_2|$
(iv) none of these

BET-021

2

L

(e)	If X and Y are two matrices so that	
	$X + Y = \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix}, Y = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} \text{ then } X =$	
	(i) $\begin{pmatrix} 4 & 2 \\ -2 & 6 \end{pmatrix}$	
	(ii) $\begin{pmatrix} -2 & -2 \\ -4 & -2 \end{pmatrix}$	·
	(iii) $ \begin{pmatrix} 3 & 2 \\ -6 & 2 \end{pmatrix} $	
	(iv) none of these	
(f)	If $f(x) = \frac{x+1}{2x-1}$, $x \in \mathbb{R}$ then Range of $f(x)$ is :	
	(i) R	
•	(ii) R except $\frac{1}{2}$	
	(iii) R except 1	
	(iv) none of these	
(g)	f(x) is a function and for $x = a$, $f'(a) = 0$, f''(a) = 5, then $f(x)$ for $x = a$ has a :	
	(i) local maxima	
	(ii) local minima	-
	(iii) none of these	
BET-021	3 P.T.C).

.

.

•

(B) Fill in the blanks :

7x1=7

(a)
$$\int_0^1 \frac{\tan^{-1}}{1+x^2} dx =$$

(b)
$$\frac{d}{dx} [\tan^{-1} (\cot x) + \cot^{-1} (\tan x)]$$

- (c) Every entry in the principal diagonal of a skew symmetric matrix is
- (d) Three points (x_1, y_1) ; (x_2, y_2) ; (x_3, y_3) are collinear if and only if :

(e) The mean of the first four multiples of 3 is _____.

(f)
$$Lt_{x\to 0} \frac{\sin x^2}{x} =$$

(g) If
$$-\sqrt{3} - i = r (\cos\theta + i \sin\theta)$$
, then
 $r = ----, \theta = -----$.

4

BET-021

P.T.O.

2. Prove that :

(a)
$$\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x} = 1$$

(b) Show that the function f(x) defined by f(x) = x if x > 0

$$= -x \text{ if } x < 0 \text{ is continuous of } x = 0$$
$$= 0 \text{ if } x = 0$$

3. Evaluate :

.

2x7=14

(a) $\int \sec^4 x \tan x \, dx$

(b) $\int_{1}^{2} (e^{3x} + 3x^2) dx$

4. (a) Find the adjoint of the matrix
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{pmatrix}$$

(b) Prove that 2x7=14

5

$$\begin{vmatrix} a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b \end{vmatrix} = (a+b+c)^3$$

BET-021

P.T.O.

5. (a) Show that the function $f(x) = x^7 + 8x^5 + 1$ is increasing for all values of x. 2x7=14

(b) Express
$$\frac{(6+i)(2-i)}{(4+3i)(1-2i)}$$
 in the form $a+ib$

6. (a) The hearts of 60 patients were examined through X-ray and the observations obtained are given below. 2x7=14

Dia of heart (in mm)	120	121	122	123	124	125
No. of patients	7	9	15	12	6	11

Find the median.

- (b) The mean weight of a class of 35 students is 45 kg. If the weight of the teachers is included the mean weight increases by 500 gms. Find the weight of the teacher.
- 7. (a) Find the points of local maxima and minima (if any) of the function. 2x7=14 $f(x) = (x-1)^3 (x+1)^2$. Find also the local maximum and minimum value.
 - (b) If $y = e^{3logx + 2x}$, Prove that $\frac{dy}{dx} = x^2(2x+3)e^{2x}$.

BET-021

6

+