Diploma in Civil Engineering / Diploma

 in Electrical \& Mechanical Engineering
Term-End Examination

June, 2010
BET-012 : PHYSICS
Time : 2 hours Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt four questions from Question No. 2 to Question No. 7. Use of calculator is permitted.

1. Choose the correct alternative :
$14 \times 1=14$
(a) Atmospheric pressure is measured by :
(i) hydrometer
(ii) thermometer
(iii) calorimeter
(iv) barometer
(b) Submarine is based on :
(i) pascal's law
(ii) Archimede's principle
(iii) Bernoulli's principle
(iv) None of the above
(c) Bernoulli's equation is important in the field
of :
(i) electrical circuits
(ii) magnetism
(iii) photo electric effect
(iv) flow of fluids
(d) Oxygen boils at $-183^{\circ} \mathrm{C}$. This is approximately :
(i) $-297^{\circ} \mathrm{F}$
(ii) $-329^{\circ} \mathrm{F}$
(iii) $-261^{\circ} \mathrm{F}$
(iv) $-215^{\circ} \mathrm{F}$
(e) An ideal material for making cooking vessels must be having :
(i) small conductivity and large heat capacity
(ii) large heat capacity and large conductivity
(iii) small heat capacity and large conductivity
(iv) small heat capacity and small conductivity
(f) At a given temperature, the velocity of sound in air is independent of change in :
(i) pressure
(ii) density
(iii) humidity
(iv) none of these
(g) The magnifying power of a telescope can be increased by using :
(i) objective of large focal length
(ii) objective of small focal length
(iii) eye lens of large focal length
(iv) all of the above
(h) When a red flower is seen through a green glass, it appears :
(i) red
(ii) green
(iii) yellow
(iv) black
(i) When light passes from one medium into another medium, then the physical property which does not change is :
(i) velocity
(ii) wavelength
(iii) frequency
(iv) refractive index
(j) A plane mirror produces a magnification of:
(i) -1
(ii) +1
(iii) zero
(iv) between 0 and $+\infty$
(k) In SI, unit of electric field is:
(i) Am^{-1}
(ii) NC^{-1}
(iii) Cm^{-1}
(iv) $\mathrm{C} \mathrm{m}^{-2}$
(l) A metallic wire of resistance 40Ω is stretched to twice its length. Its resistivity will :
(i) become half
(ii) become double
(iii) remain same
(iv) become four times
(m) The appropriate material used in the construction of resistance boxes is :
(i) copper
(ii) iron
(iii) manganin
(iv) aluminium
(n) Which one of the following substances is not magnetic?
(i) Brass
(ii) Cobalt
(iii) Nickel
(iv) Iron
2. (a) Explain surface tension. Give its units and dimensions.

$$
4+5+5
$$

(b) A steel wire of length 4.7 m and cross-section $3.0 \times 10^{-5} \mathrm{~m}^{2}$ stretches by the same amount as a copper wire of length 3.5 m and cross-section $4.0 \times 10^{-5} \mathrm{~m}^{2}$ under a given load. Determine the ratio of the Young's modulus of steel to that of copper ?
(c) Water flows through a hose (pipe), whose internal diameter is 2.1 cm at a speed of $1.0 \mathrm{~ms}^{-1}$. Calculate the diameter of the nozzle, if the water is to emerge at a speed of $4.0 \mathrm{~ms}^{-1}$?
3. (a) Distinguish between conduction and convection. Give one application in each case of conduction and convection. $\quad 4+5+5$
(b) At what temperature is the numerical value same on both the Celsius and Fahrenheit scales?
(c) A mass of 10 kg falls through a height of 50 m and rotate a paddle wheel which churns 1 kg of water. The initial temperature of water is $2^{\circ} \mathrm{C}$. Calculate the increase in the temperature.
Given: $\mathrm{J}=4.2 \times 10^{7} \mathrm{erg} . \mathrm{Cal}^{-1}$.
4. (a) Define wave motion. Distinguish between transverse and longitudinal wave motion by giving examples in each case.
(b) The speed of sound in air at 300 K is $348 \mathrm{~ms}^{-1}$. At what temperature will the speed be $402 \mathrm{~ms}^{-1}$?
(c) A tuning fork makes 284 vibrations per second in air. Compute the wavelength of the tone emitted.
Given : speed of sound $=330 \mathrm{~ms}^{-1}$
5. (a) State the laws of reflection. Mention the characteristics of image formed by a plane mirror.
(b) Determine the location and nature of the images formed by convex lens when the object is placed at :
(i) 2 F , and
(ii) F .
(c) A ray of light is incident from glass on the interface separating it from air at an angle of 45° and is deviated through 20°.
Calculate the critical angle for the glass-air surface.
6. (a) State Coulomb's law in electrostatics. Express the same in SI units.
(b) Calculate the electric force between two charged spheres having charges $5 \times 10^{-7} \mathrm{C}$ and $8 \times 10^{-7} \mathrm{C}$ and placed 0.80 m apart in air.
(c) Calculate the resistivity of the material of a wire 8 m long, 0.4 mm in diameter and having a resistance of 4Ω.
7. Write short notes on any four of the following:
(a) Paramagnetic Substance
$4 \times 31 / 2=14$
(b) Magnetic Susceptibility
(c) Ammeter
(d) Galvanometer
(e) Primary Cell
(f) Faradays Laws of Electrolysis

