Diploma in Civil Engineering / Diploma

 in Electrical \& Mechanical Engineering

Term-End Examination

June, 2010
BET-011 : MATHEMATICS-I
Time : 2 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt any four more questions out of the remaining questions numbered 2 to 6. Use of calculator is permitted.

1. Answer any seven of the following : $7 \times 2=14$
(a) Express the following surd in the simplest

$$
\text { form }: \sqrt[4]{\frac{16}{27}}
$$

(b) $4 x+4 y=7$ is the equation of a line. Find the intercept on the y-axis and the angle made by this line with the positive direction of the x-axis.
(c) Without solving, comment upon the nature of roots of the quadratic equation $25 x^{2}-10 x+1=0$.
(d) If $\log _{10}{ }^{2}=.30103$, Evaluate $\log _{10}\left(\frac{1000}{256}\right)$.
(e) Find the sum of 19 terms of an A.P. whose $\mathrm{n}^{\text {th }}$ term is $2 \mathrm{n}+1$.
(f) In a triangle $A B C$, prove that $\sin \frac{A+B}{2}=\cos \frac{C}{2}$.
(g) What is the meaning of the following box in a flow chart?

(h) The centre of a circle is $(x, 5 x+3)$. Find x if the circle passes through $(7,15)$ and length of its diameter is 10 units.
(i) Find the co-ordinates of the foci of the hyperbola $3 x^{2}-y^{2}=4$.
(j) If $\vec{a}=4 \vec{i}-2 \vec{j}+\vec{k}$ and
$\vec{b}=\vec{i}+\vec{j}+3 \vec{k}$ find the projection of \vec{b} on \vec{a}.
2. (a) Without using tables Find the Value of

$$
\frac{\cos 75^{\circ}}{\sin 15^{\circ}}+\frac{\sec 12^{\circ}}{\operatorname{cosec} 78^{\circ}}-\frac{\cot 18^{\circ}}{\tan 72^{\circ}} .
$$

(b) Prove that $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$.
(c) A tree stands vertically on the bank of a river. From a point on the other bank directly opposite the tree, the angle of elevation of the top of the tree is 60°. From a point 20 m behind this point on the same bank, the angle of elevation of the top of the tree is 30°. Find the height of the tree and the width of the river.
3. (a) Given two vectors a and b
$a=3 i-2 j+k, b=2 i+3 j$
Compute $|a|,|b|, a . b$ and the angle between a and b.
(b) Find a unit vector perpendicular to the vectors $i-j+k$ and $i+2 j-k$.
(c) Prove that for any vector $\overrightarrow{\mathrm{a}}$
$i \times(a \times i)+j \times(a \times j)+k \times(a \times k)=2 \vec{a}$.
4. (a) Insert 4 Geometric means between 3 and 96. Show that their product is the 4th power of the Geometric Mean between them.
(b) Find the term independent of x in the 4
expansion of $\left(2 x-\frac{1}{x}\right)^{10}$.
(c) If $\frac{\sqrt{5}-1}{\sqrt{5}+1}+\frac{\sqrt{5}+1}{\sqrt{5}-1}=a+b \sqrt{5}$. Find a 5 and b.
5. (a) P lies on a line segment joining $A(-3,3)$
and $B(12,-7)$ such that $\frac{A P}{B P}=\frac{2}{3}$. Find the co-ordinates of P and also the equation of line through P and perpendicular to $A B$.
(b) Find the measure of the angle of intersection
of the lines whose equations are $3 x+4 y+7=0$ and $4 x-3 y+5=0$.
(c) Find the equation of a circle of radius 5 whose centre lies on x-axis and which passes through the point $(2,3)$.
6. (a) Find the focus, vertex and directrix of the
parabola $4 y^{2}+12 x-12 y+39=0$.
(b) Solve the triangle ABC , given $\mathrm{a}=20 \mathrm{~cm}$, 4 $\mathrm{b}=30 \mathrm{~cm}, \mathrm{c}=21 \mathrm{~cm}$.
(c) The hypotenuse of a right angled triangle is 5 25 cm and the difference between the length of the other two sides is 5 cm . Find the length of these sides.

