Diploma in Civil Engineering

N ∞ \sim \sim \sim
 Term-End Examination
 June, 2010
 BCE-061: IRRIGATION ENGINEERING

Time : 2 hours Maximum Marks : 70

Note: Question number 1 is compulsory. Attempt any four more questions from the remaining questions.

1. (a) The salinity of water for irrigation purpose is measured by :
(i) SAR value
(ii) pH value
(iii) Electrical conductivity
(iv) None of the above
(b) Which of the following is not the cash crop :
(i) Jute
(ii) Tea
(iii) Rice
(iv) Sugarcane
(c) The water which can be utilised by the crops from the soil is known as :
(i) Hygroscopic water
(ii) Field capacity
(iii) Capillary water
(iv) None of these
(d) If the water applied to a field penetrates uniformly throughout then the water distribution efficiency is :
(i) zero
(ii) 0.5
(iii) 1.0
(iv) 1.5
(e) The amount of rainfall and the amount of runoff are not equal because of :
(i) losses
(ii) heavy rainfall
(iii) low rainfall
(iv) none of these
(f) The hydraulic mean depth of a canal section with following data is equal to :
(Area $=10 \mathrm{~m}^{2}$, Perimeter $=5 \mathrm{~m}$,
Depth $=1.5 \mathrm{~m}$)
(i) 2 m
(ii) 5 m
(iii) 1.5 m
(iv) 7.5 m
(g) Energy is required in the utilisation of :
(i) Ground water
(ii) Surface water
(iii) Both (i) and (ii)
(iv) None of these
(h) The coefficient of permeability (K) and coefficient of transmissibility (T) for an aquifer of depth d is given by :
(i) $\mathrm{T}=\mathrm{Kd}$
(ii) $\mathrm{K}=\mathrm{Td}$
(iii) $\mathrm{d}=\mathrm{KT}$
(iv) None of these
(i) The confined aquifer is also known as :
(i) artificial aquifer
(ii) gravity aquifer
(iii) both (i) and (ii)
(iv) None of these
(j) Earthen dams are :
(i) rigid dams
(ii) non-rigid dams
(iii) overflow dams
(iv) diversion dams
(k) The structural efficiency of gravity dam is
\qquad that of arch dam.
(i) more than
(ii) less than
(iii) equal to
(iv) not comparable with
(l) Critical velocity is known as :
(i) Non silting velocity
(ii) Non scouring velocity
(iii) Both of the above
(iv) None of the above
(m) The area of cross section of a trapezoidal channel is $8 \mathrm{~m}^{2}$, if the critical velocity of water flowing in the channel is $1 \mathrm{~m} / \mathrm{sec}$. The discharge in the channel will be :
(i) $0.8 \mathrm{~m}^{3} / \mathrm{sec}$
(ii) $1.8 \mathrm{~m}^{3} / \mathrm{sec}$
(iii) $8 \mathrm{~m}^{3} / \mathrm{sec}$
(iv) $1 \mathrm{~m}^{3} / \mathrm{sec}$
(n$)$ The maximum flood discharge given by Ryve's formula is $\mathrm{Q}=\mathrm{CA}^{\mathrm{n}}$ Where n is :
(i) $1 / 2$
(ii) $3 / 4$
(iii) $2 / 3$
(iv) $4 / 3$
2. (a) What are the various methods for the estimation of runoff? Explain any one in detail.
(b) Name the factors affecting duty.
3. (a) Name the various types of irrigation structures.
(b) Design a triangular section of a concrete lined canal to carry a discharge of $45 \mathrm{~m}^{3} . / \mathrm{sec}$ at a slope of L in 10,000 . The side of canal is $1 \frac{1}{4}: 1$ and Manning's coefficient is 0.018 .
4. (a) An artesian tube well has a diameter of 20 cm . The thickness of aquifer is 30 m and its hydraulic conductivity (K) is $4.2 \times 10^{-4} \mathrm{~m} / \mathrm{sec}$. Find its yield under a drawdown (S) of 4 m at the well face. The radius of influence is given by $R=3000 \mathrm{~S} \sqrt{\mathrm{~K}}$.
(b) Differentiate between shallow well and deep well ; open well and tube well; confined aquifer and unconfined aquifer.
5. (a) Explain with neat sketches the function of following hydraulic structures canal drop, canal regulators, canal escape.
(b) Why a spillway is provided in a dam? 7

Explain the function of spillway as energy dissipator.
6. (a) What are the various components of sprinkler irrigation system? What are the advantages of this system?
(b) Explain the suitability and limitation of
drip irrigation. Compare the performance of conventional irrigation with drip irrigation.
7. (a) What are the impurities present in water which make it unsuitable for irrigation? List the methods for the measurement of impurities in water.
(b) Explain the effects of water logging.

Discuss in brief the types of drainage system adopted to check this problem.

