Diploma in Civil Engineering

Term-End Examination

June, 2010

BCE-045 : CONSTRUCTION DRAWING

Time : 2 hours Maximum Marks : 70
Note : Part 'A' is to be attempted on answer script and Part 'B' on drawing sheet. Use of calculator is allowed.
Assume suitable data wherever necessary.

PART-A

Attempt any five questions from the following:

1. Why standard abbreviations are used in drawings ? 7 Give abbreviations for the following terms :
(a) With respect to
(b) Checked
(c) Centre to centre
(d) etcetra
(e) Flooring
(f) country cut teak wood and
(g) Constant
2. (a) Describe different types of lines with their $3^{1 / 2}$ applications.
(b) What are standard categories of scales. $31 / 2$
3. Design a lime concrete footing for a 250 wall 7 carrying a load of $100 \mathrm{kN} / \mathrm{m}$ run.
Safe bearing capacity of soil $=110 \mathrm{kN} / \mathrm{m}^{2}$
Angle of repose of soil $=28^{\circ}$ and
Unit weight of soil $=17 \mathrm{kN} / \mathrm{m}^{3}$.
4. (a) What is a strap footing ? Explain it's function when one of the column lies on the property line and is lightly loaded as compared to other interior column.
(b) Show the reinforcement details of slab and beam separately in above mentioned footing of Q 4 (a) with the help of neat Drawings.
5. (a) What is a pile foundation? Explain when $31 / 2$ pile foundations are provided.
(b) Show the specifications of dimensioning of $31 / 2$ a double under reamed footing.
6. Sketch the plan and elevation of a dog legged stair case.
7. Define welds and mention their various types.

Draw/sketch all types of welded joints.
8. (a) Why a steel truss is preferred to wooden $31 / 2$ trusses?
(b) Write differences between Howe Truss and 31⁄2 Pratt truss.

PART-B

Attempt Q No. 9 which is compulsory and attempt any one question from the remaining. Adopt suitable scale and mention clearly.
9. Draw the sectional elevation of a strip footing for an external concrete wall of thickness 300 mm . The footing is provided at a depth of 1.80 m below the ground level. Plinth level is 0.50 m above the Ground. The Design details are as under :

- Width of footing $=2.50 \mathrm{~m}$
- Overall depth of footing $=475 \mathrm{~mm}$
- Depth of footing at edges $=175 \mathrm{~mm}$
- Tensile reinforcement in footing-12 ϕ HYSD Bars @ $120 \mathrm{c} / \mathrm{c}$
- Distribution reinforcement in footing 10ϕ HYSD Bars @ $200 \mathrm{c} / \mathrm{c}$

10. A combined rectangular footing with a strap beam connects two RCC columns of size 300 mm square which carry equal loads. Design, details are as under :

- Size of footing $=1.5 \times 6.0 \mathrm{~m}$
- Overall depth of footing $=300 \mathrm{~mm}$
- Main Tensile reinforcement-10 ϕ HYSD @ $200 \mathrm{c} / \mathrm{c}$
- Distribution reinforcement-10 ϕ HYSD @ $200 \mathrm{c} / \mathrm{c}$
- Overall depth of beam -600 mm
- Width of beam -400 mm
- Tension reinforcement of beam-4 nos. 22ϕ HYSD
- Tension reinforcement in cantilever portion - 2 nos.-22 ϕ HYSD
- Shear reinf. throughout beam $-8 \phi 4$ legged stirrups @ $250 \mathrm{c} / \mathrm{c}$
Prepare the following structural working drawing for the combined rectangular footing.
(a) Plan of rectangular combined footing 5
(b) L -section of strap beam 10
(c) Cross section of footing $\mathbf{1 0}$

11. (a) A doubly reinforced rectangular beam is provided over a door opening of clear size $3 \times 2.5 \mathrm{~m}$. Draw the longitudinal and cross section of the beam with the following details :

- Clear span of beam -3.00 m
- Overall depth of beam - 250 mm
- Width of beam - 500 mm
- Tensile reinforcement 4-12 ϕ
- Compression reinforcement $2-10 \phi$
- Shear reinforcement 4 nos. $6 \phi-2$ legged stirrups @ $100 \mathrm{c} / \mathrm{c}$ at each end and nominal shear reinforcement in remaining part.
(b) A single leaf double panelled wooden door of size $1.20 \times 2.15 \mathrm{~m}$ with plywood panel inserts of 12 mm thickness is provided in a room of a residential building.
(i) Draw the elevation of door
(ii) Draw the sectional plan of door

