No. of Printed Pages : 4

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

ET-302(A) : COMPUTER PROGRAMMING \& NUMERICAL ANALYSIS

Time : 3 hours

Maximum Marks : 70
Note : Attempt any five questions. All questions carry equal marks.

1. (a) State mean value theorem. Use it to find a point z in the interval $] 0,4[$ such that

$$
f^{\prime}(z)=\frac{f(4)-f(0)}{4-0}
$$

for the function

$$
f(x)=(x-1)(x-2)(x-3)
$$

(b) Explain truncation error, calculate the truncation error in approximating

$$
\mathrm{e}^{-x^{2}} \text { by } 1-x^{2}+\frac{x^{4}}{2}
$$

$$
\text { in }-1 \leq x \leq 1
$$

2. Use L U decomposition method to solve the system of equations
$x+y+z=1$
$4 x+3 y-z=5$
$3 x+5 y+3 z=3$
(b) Using synthetic division check whether $\alpha=3$ is a root of the polynomial equation $x^{4}+x^{3}-13 x^{2}-x+12=0$. Also find the quotient polynomial.
3. (a) (i) Show that a matrix A and its transpose A^{T} have same eigen values.
(ii) Show that a matrix A is singular if and only if it has zero eigen value.
(b) Estimate the production for 2004 and 2006 from the following data :
$\begin{array}{lllllllll}\text { Year: } & 2001 & 2002 & 2003 & 2004 & 2005 & 2006 & 2007 \\ \text { Production: } & 200 & 220 & 260 & - & 350 & - & 430\end{array}$
4. (a) Determine by Lagrange's formula, the percentage number of criminals under 35 years :

Age $\quad \%$ no of criminals
under 25 yrs 52
under $30 \mathrm{yrs} \quad 67.3$
under 40 yrs 84.1
under $50 \mathrm{yrs} \quad 94.4$
(b) The distance covered by an athlete for the 50 metre race is given in following table :

Time (sec):	0	1	2	3	4	5	6
Distance $(\mathbf{m}):$	0	2.5	8.5	16	25	37	50

Determine the speed of the athlete at $t=5$ sec (correct to two decimals)
5. (a) Evaluate $\int_{0}^{1} \frac{\mathrm{~d} x}{1+x}$ by dividing the interval of integration into 8 equal parts. Hence find $\log _{e}{ }^{2}$ approximately.
(b) Use Runge's method to approximate y when $x=1.1$, given that $y=1.2$ when $x=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x+y^{2}$.
6. (a) Write the FORTRAN program segment for the following flow chart using :
(i) Logical IF
(ii) If THEN ELSE

(b) Given an array of numbers, locate the position of the largest number. Print its value and the corresponding element, write a program for the above task.
7. (a) Write a subroutine to multiply a matrix A with its transpose A^{T}.
(b) Draw a flow chart and also a program to find the roots of the quadratic equation $a x^{2}+b x+c=0$.
8. (a) What are different type of common files used for storage of data? Write about each one of them.
(b) Explain the syntax of each of following :
(i) Logical IF
(ii) Do statement
(iii) File open, file close
(iv) Constant

