B.Tech. Civil (Construction Management) /

 B.Tech. Civil (Water Resources Engineering)Term-End Examination
June, 2010

ET-202(B) : PRINCIPLES OF ELECTRICAL SCIENCES

Time : 3 hours

Maximum Marks : 70
Note: Answer any five questions in all. Use of calculator is permissible.

1. (a) State the relative merits of iron-cored and air-cored inductors. If the current fed to an ideal inductor has a periodical symmetrical triangular waveform, what would be the waveform of the voltage across the inductor? Explain.
(b) State and explain :
(i) Superposition theorem
(ii) Thevenin's theorem
(c) Solve for all the current in the circuit shown 4 below by the loop current method :

2. (a) Explain briefly the necessity of power factor correction.
(b) A2-terminal network " N " draws a power " P " of 100 W and a relative power " Q " of 75 VAR when connected to a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ sinusoidal voltage source. If N comprises two elements in series, determine the nature and values of these two elements.
(c) Determine the system function for the

4 system shown below and hence find the system function for a unity feedback system employing negative feedback.

3. (a) What are the different components of power loss that takes place in a transformer ? How do they vary with the load current? What component (or components) of the power loss does the short circuit test on a transformer provide.
(b) Give brief reasons for the following :
(i) Fuses are not employed on the neutral side of a residential wiring installation.
(ii) The use of 3 pin plugs and sockets is recommended for use with portable electrical appliances.
(c) A practical voltage source can be converted

2 into an equivalent practical current source. Draw an equivalent circuit diagram for this.
4. (a) What are the basic components used in

6 electrical installations ? State briefly the function of each component.
(b) A 0.8 p.f balanced 3 phase load takes 8.66 A from a $400 \mathrm{~V}, 3$-Phase mains. Find the readings of two wattmeters connected to measure the power input to the load. Draw a phasor diagram showing the current and voltage fed to the wattmeter.
(c) A lissajous pattern obtained on a CRO screen has $f_{\mathrm{y}}=150 \mathrm{~Hz}$, No. of touching points on a horizontal tangent $=3$, No. of touching points on a vertical tangent $=2$.
5. (a) What are the applications of semiconductor diodes? Give the basic circuit diagram of each application,
(b) If a BJT differential amplifier is operating with a current source $\mathrm{I}_{0}=1 \mathrm{~mA}$ and collector resistance $\mathrm{R}_{\mathrm{c}}=1 \mathrm{k}$ ohm, determine the differential mode gain of the amplifier. Assume $\mathrm{V}_{\mathrm{T}}=26 \mathrm{mv}$ and $\alpha=0.9$.
(c) An 8-bit A-to-D converter of the successive approximation type is used in a DVM. The output of the ADC is 10111101 . Find the contents of the Successive Approximation Register (SAR) at the end of each previous stage of conversion during the conversion process.
6. (a) What is a multiplexer ? Draw the symbol of a 4-to-1 multiplexer showing the various inputs and outputs and write its truth table.
(b) Design a summing amplifier circuit using an operational amplifier to obtain an output voltage V_{0} give by $0.1 \mathrm{~V}_{i 1}-10 \mathrm{~V}_{i 2}-102 \mathrm{~V}_{i 3}$ where $V_{i 1}, V_{i 2}$ and $V_{i 3}$ are input voltages.
(c) Design a wien Bridge oscillator for a frequency of 100 kHz .
7. (a) What are the different addressing modes available in the 8085 microprocessor ? Give an example of each mode.
(b) Write an 8085 assembly language program to add five data types stored in consecutive memory locations starting with the address 1000_{H} and store the sum and carry in two successive locations after the data. Assume that no overflow is caused.
(c) Find the decimal equivalent to : 2
(i) $(1110101)_{2}$
(ii) $(101011)_{2}$

