B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination

June, 2010

ET-201(A) : MECHANICS OF FLUIDS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. Use of calculator is permitted.

1. (a) One litre of crude oil weighs 9.6 N . Calculate its specific weight, density and specific gravity.
$2 \times 5=10$
(b) Assuming that the bulk modulus of elasticity of water is $2.07 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ at standard atmospheric conditions, determine the increase of pressure necessary to produce 1% reduction in volume at the same temperature.
2. (a) Determine the gauge pressure and absolute pressure at a point 4 m below the free surface of a liquid of specific gravity 1.53 , if atmospheric pressure is equivalent to 750 mm of mercury.
(b) A wooden block of width 2 m , depth 1.5 m , and length 4 m floats horizontally in water. Find the volume of water displaced and position of centre of buoyancy. The specific gravity of wooden block is 0.7 .
3. (a) The velocity potential function ϕ, is given
by :
$2 \times 5=10$

$$
\phi=x^{2}-y^{2} .
$$

Find the velocity components in x and y direction. Also show that ϕ represents a possible case of fluid flow.
(b) The velocity components in a two dimensional flow are :

$$
\begin{aligned}
& u=8 x^{2} y-\frac{8}{3} y^{3}, \text { and } \\
& v=-8 x y^{3}+\frac{8}{3} x^{3} .
\end{aligned}
$$

Show that these velocity components represent a possible case of an irrotational flow.
4. (a) Pipe A, 450 mm in diameter branches into two pipes B and of diameters 300 mm and 200 mm respectively as shown in figure 1. $2 \times 5=10$

Figure - 1

If the average velocity in 450 mm diameter pipe is $3 \mathrm{~m} / \mathrm{sec}$, find :
(i) discharge through 450 mm diameter pipe, and
(ii) Velocity in 200 mm diameter pipe, if the average velocity in 300 mm diameter pipe is $2.5 \mathrm{~m} / \mathrm{sec}$.
(b) The water is flowing through a pipe having diameters 20 cm and 15 cm at sections 1 and 2 respectively. The rate of flow through pipe is 40 litres $/ \mathrm{sec}$. The section 1 is 6 m above datum line and section 2 is 3 m above the datum. If the pressure at section 1 is $29.43 \mathrm{~N} / \mathrm{cm}^{2}$, find the intensity of pressure at section 2 .
5. (a) What is a venturimeter ? Derive an expression for the discharge through a venturimeter.
$2 \times 5=10$
(b) For the laminar flow through a circular pipe, prove that :
(i) The shear stress variation across the section of the pipe is linear, and
(ii) The velocity variation is parabolic.
6. (a) What are the different methods of determining the co-efficient of viscosity of a liquid ? Describe any one method in detail. $\mathbf{2 \times 5 = 1 0}$
(b) An oil of specific gravity 0.9 and viscosity 10 poise is flowing through a pipe of diameter 110 mm . The velocity of the fluid at the centre is $2 \mathrm{~m} / \mathrm{s}$, find
(i) pressure gradient in the direction of flow,
(ii) shear stress at the pipe wall, and
(iii) velocity at a distance of 30 mm from the wall.
7. (a) What do you understand by turbulent flow?

What factor describes the type of flow in pipes ?
$\mathbf{2 \times 5 = 1 0}$
(b) An oil of specific gravity 0.7 is flowing through a pipe of diameter 300 mm at the rate of 500 litres $/ \mathrm{sec}$. Find the head loss due to friction and power required to maintain the flow for a length of 1000 m . Take $\boldsymbol{\vartheta}=0.29$ stokes.
8. (a) A partially submerged body is towed in water. The resistance R to its motion depends on the density ρ, the viscosity μ of water, length l of the body, velocity V of the body, and the acceleration due to gravity g. Show that the resistance to the motion can be expressed in the form

$$
\mathrm{R}=\rho \mathrm{L}^{2} \mathrm{~V}^{2} \phi\left[\left(\frac{\mu}{\rho \mathrm{VL}}\right),\left(\frac{l g}{\mathrm{~V}^{2}}\right)\right]
$$

(b) What is meant by boundary layer ? Why does it increase with distance from the upstream edge?
9. (a) Find the displacement thickness and momentum thickness for the velocity distribution in the boundary layer given by :

$$
2 \times 5=10
$$

$$
\frac{\mathrm{u}}{\mathrm{v}}=2(y / \delta)-(y / \delta)^{2}
$$

where $\delta=$ boundary layer thickness.
(b) Experiments were conducted in a wind tunnel with a wind speed of $50 \mathrm{~km} /$ hour on a flat plate of size 2 m long and 1 m wide. The density of air is $1.15 \mathrm{~kg} / \mathrm{m}^{3}$. The coefficient of lift and drag are 0.75 and 0.15 respectively.

Determine :
(i) the lift force
(ii) the drag force,
(iii) the resultant force, and
(iv) the direction of resultant force
10. Write short notes on any four of the following :
(a) Nozzle $4 \times 2^{1 / 2}=10$
(b) Continuity equation
(c) Water hammer
(d) Viscosity
(e) Reynold's number
(f) Head loss

