B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination June, 2010

ET-105(B) : CHEMISTRY

Time : 3 hours

Maximum Marks: 70

- **Note**: Question number 1 is **compulsory**. Attempt **five** more questions from question numbered from 2 to 10. Use of calculator is allowed.
- 1. (a) In a salt solution, H_2S gas is passed in 2 presence of excess NH_4Cl and NH_4OH , the metal ion that will precipitate will be :
 - (i) Na⁺
 - (ii) Zn^{2+}
 - (iii) Sr^{2+}
 - (iv) Ca^{2+}
 - (b) Which of the compound(s) has/have only 2 one type of hybridization for carbon ?
 - (i) $CH_2 = CH CH = CH_2$
 - (ii) $CH_3 CH_2 CH_2 CH_3$
 - (iii) $CH_3 C \equiv C CH_3$
 - (iv) $HC \equiv C C \equiv H$

ET-105(B)

P.T.O.

00406

ET-105(B)

(c) The IUPAC name for the compound :

 $CH_3 - CH - CH - C - CHO$ $| \qquad | \\Br \qquad OH \qquad O$

(i) 3-Hydroxy-2-keto-4-bromo-1pentanal 2

2

2

- (ii) 2-keto-3-hydroxy-4 bromopentanaldehyde
- (iii) 4-Bromo-3-hydroxy-2-ketopentanal
- (iv) 1-Formyl-3-hydroxy-4-bromo-2pentanone
- (d) An isomer of ethanol is :
 - (i) Methanol (ii) Diethyl ether
 - (iii) Acetone (iv) Dimethyl ether
- (e) Which of the following series contains only 2 nucleophiles ?
 - (i) NH_3 , H_2O , $AlCl_3$
 - (ii) NH_{3} , ROH, H_2O
 - (iii) H_2O, H_3O^+, SO_3
 - (iv) None of these
- (f) The units of heat are :
 - (i) Degree and calorie
 - (ii) Calorie and Joule
 - (iii) Degree and Joule
 - (iv) Degree and ergs
- (g) The rate of reaction is doubled for every 10° 2 rise in temperature. The increase in reaction rate as a result of temperature rise from 10° to 100° is :

(i)	112	(ii)	400
(iii)	512	(iv)	614

ET-105(B)

(h) An atom at the corner of a simple cubic unit cell (*u*c) is shared by :

(i) 2 <i>u</i> c	(ii)	4 uc
------------------	------	------

- (iii) 8 *u*c (iv) 1 *u*c
- (i) E_{RP}^{o} for Fe²⁺/Fe and Sn²⁺/Sn are -0.44 **2** volt and -0.14 volt respectively. The standard e.m.f. for the cell

$$Fe^{2+} + Sn (s) \longrightarrow Fe (s) + Sn^{2+}$$

is :

- (i) 0.30 V (ii) -0.58 V
- (iii) 0.58 V (iv) -0.30 V
- (j) The oxidation state of the most electronegative element in the products of the reaction between $BaO_2 + H_2SO_4$ are :

(i)	0 and -1	(ii)	-1 and -2
(iii)	-2 and 0	(iv)	-2 and $+2$

- (a) Explain
 - (i) Heisenbergs uncertainty principle
 - (ii) Aufbau principle
 - (b) According to Bohr's theory, the electronic energy of hydrogen atom in nth Bohr orbit is given by

$$E_n = \frac{-21.76 \times 10^{-19} \times Z^2}{n^2},$$

where Z is the nuclear charge. Calculate the longest wavelength of light that will be needed to remove an electron from the third Bohr orbit of the He⁺ ion.

Given : Plank's constant = 6.626×10^{-34} Js Speed of light, c= 3.0×10^8 ms⁻¹

3

ET-105(B)

P.T.O.

2.

5

5

2

3. (a) Fraction of the total volume occupied by **4** atoms in simple cubic unit cell is :

(i)
$$\frac{\pi}{2}$$
 (ii) $\frac{\sqrt{3}\pi}{8}$

(iii)
$$\frac{\sqrt{2} \pi}{6}$$
 (iv) $\frac{\pi}{6}$

Justify your answer.

(b) Metallic gold crystalizes in the FCC lattice. 6
The length of the cubic unit cell, a = 4.07 Å.
Calculate the closest distance between gold atoms and the density of gold.

Atomic mass of Au = 197 amu

and 1 amu = 1.66×10^{-24} g

4. (a) The difference between heat of reaction at constant pressure and constant volume for the reaction,

 $2 \operatorname{C}_6\operatorname{H}_6(l) + 15 \operatorname{O}_2(g) \longrightarrow 12 \operatorname{CO}_2(g) + 6 \operatorname{H}_2\operatorname{O}(l)$

5

at 25°C in kJ is :

- (i) -7.43 (ii) +3.72
- (iii) -3.72 (iv) +7.43

(Given : $R = 8.314 \text{ JK}^{-1} \text{ mole}^{-1}$)

Justify your answer.

(b) The bond dissociation energy of gaseous 5 H_2 , Cl_2 and HCl are 104, 58 and 103 kcal/mole respectively. Calculate the enthalpy of formation of HCl gas.

ET-105(B)

If the rate constant, k of a reaction is (a) 5. 1.6×10^{-3} mole lit⁻¹ min⁻¹, the order of reaction is : (i) 0 (ii) 2 (iv) 3 (iii) 1 Justify your answer. If a reaction with $t_{\frac{1}{2}} = 69.3$ second, has a (b) 3 rate constant value of 10^{-2} per second, the order is :

(i)	0	(ii)	1
(iii)	2	(iv)	3

Justify your answer

(c) The possible mechanism for the reaction : 4

 $2 \text{ NO} + \text{Br}_2 \longrightarrow 2 \text{ NOBr},$

is

 $NO + Br_2 \xrightarrow{fast} NOBr$

NOBr + NO $\xrightarrow{\text{slow}}$ 2 NOBr Establish the rate law. Justify your answer.

6.

Enumerate the postulates of Bohr's atomic 4 (a) models. Deduce the expression for atomic radius and energy.

Five mole of oxygen at 127°C undergoes (b) 6 isothermal compression from 2 atm to 10 atm. What is the entropy change of the system ? The system actually gave up 24.7693 kJ of heat during the transformation. Is the transformation reversible or irreversible ?

Given : $R = 8.314 \text{ JK}^{-1} \text{ mole}^{-1}$

ET-105(B)

5

P.T.O.

- (a) In which mode of expression, the concentration of solution remains independent of temperature ?
 - (i) Molarity (ii) Normality
 - (iii) Formality (iv) Molality

Justify your answer.

(b) Which of the following 0.1 M aqueous solution 3 will have the lowest freezing point ?

(i)	K ₂ SO ₄	(ii)	NaCl
(iii)	(NH ₂) ₂ CO	(iv)	C ₆ H ₁₂ O ₆

Justify your answer.

- (c) The vapour pressure of pure benzene at a certain temperature is 640 mmHg. A nonvolatile nonelectrolyte solid weighing 2.175 g is added to 39 g of benzene. The vapour pressure of the solution is 600 mm Hg. What is the molecular weight of the solid substance ?
- 8. (a) Calculate the approximate pH of a 0.1 M H₂S (aq) solution. The first and second dissociation constants of H₂S are 1×10^{-7} and 1.3×10^{-14} respectively.
 - (b) For the reaction,

 $CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g),$ $K_p = 0.1147 \text{ atm}^{-2} \text{ at } 327^{\circ}C.$ What will be the value of K_c at $327^{\circ}C$? $R = 0.0821 \text{ JK}^{-1} \text{mol}^{-1}.$

ET-105(B)

7.

5

2

9.	(a) Describe in detail the function of lead storage battery.			4		
	(b)	Explain the following bonds with example (any three) :			6	
		(i)	Ionic bond			
		(ii)	Covalent bond			
		(iii)	Metallic bond			
		(iv)	Hydrogen bond			
10.	(a)	Ce(58	3) is a member of	:		1
		(i)	s-block	(ii)	p-block	
		(iii)	d-block	(iv)	f-block	
	(b) Which metal cannot be obtained b electrolysis ?			obtained by	1	
		(i)	Ag	(ii)	Mg	
		(iii)	Cu	(iv)	Cr	
	(c)	The volume of '10 vol' of H_2O_2 required to liberate 500 ml of O_2 at STP is :			₂ O ₂ required to is :	1
		(i)	50 ml	(ii)	25 ml	
		(iii)	100 ml	(iv)	125 ml	
	(d)	The metallic lusture exhibited by sodium is explained by :				1
		(i)	Diffusion of sodi	um io	ons	
		(ii)	Oscillation of loc	ose ele	ectrons	
		(iii)	Excitation of free	e prot	ons	
		(iv) Existance of body centred cubic lattice				
	(e)	Whic	h of the following	is the	strongest acid ?	1
		(i)	SO(OH) ₂	(ii)	SO ₂ (OH) ₂	
		(iii)	ClO ₂ (OH)	(iv)	ClO ₃ (OH)	
ET-1(05(B)		7		P. 7	Г.О.

- (f) In compound Buta-1, 2-diene, the state of **1** hybridizations exist are :
 - (i) sp, sp^2, sp^3
 - (ii) sp^2 , sp^3 , sp^3d^1
 - (iii) sp, sp^3, sp^3d^1
 - (iv) sp^3 , sp^3d^1 , sp^3d^2
- (g) The enolic form of acetone contains :
 - (i) 9 sigma bonds, 1 pi bond and 2 lone pairs

1

- (ii) 8 sigma bonds, 2 pi bonds and 1 lone pair
- (iii) 10 sigma bonds, 1 pi bond and 1 lone pair
- (iv) 9 sigma bonds, 2 pi bonds and 1 lone pair
- (h) Which of the following will have least 1 hindered rotation about carbon-carbon bond ?
 - (i) Ethane (ii) Ethylene
 - (iii) Acetone (iv) Hexachloroethane
- (i) The helical structure of proteins is stabilised **1** by :
 - (i) Peptide bonds
 - (ii) Dipeptide bonds
 - (iii) Hydrogen bonds
 - (iv) van der Waal's forces
- (j) n-propyl alcohol and isopropyl alcohol are : 1
 - (i) Position isomerism
 - (ii) Chain isomerism
 - (iii) Tautomerism
 - (iv) Geometrical isomerism

ET-105(B)