B.Tech. Civil (Construction Management) /
 B.Tech. Civil (Water Resources Engineering)

Term-End Examination
June, 2010

ET-105(B) : CHEMISTRY

Time : 3 hours
Maximum Marks : 70
Note: Question number 1 is compulsory. Attempt five more questions from question numbered from 2 to 10. Use of calculator is allowed.

1. (a) In a salt solution, $\mathrm{H}_{2} \mathrm{~S}$ gas is passed in 2 presence of excess $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$, the metal ion that will precipitate will be :
(i) Na^{+}
(ii) Zn^{2+}
(iii) Sr^{2+}
(iv) Ca^{2+}
(b) Which of the compound(s) has/have only

2 one type of hybridization for carbon?
(i) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iii) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(iv) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{H}$
(c) The IUPAC name for the compound :

(i) 3-Hydroxy-2-keto-4-bromo-1pentanal
(ii) 2-keto-3-hydroxy4 bromopentanaldehyde
(iii) 4-Bromo-3-hydroxy-2-ketopentanal
(iv) 1-Formyl-3-hydroxy-4-bromo-2pentanone
(d) An isomer of ethanol is:
(i) Methanol (ii) Diethyl ether
(iii) Acetone (iv) Dimethyl ether
(e) Which of the following series contains only

2 nucleophiles ?
(i) $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{AlCl}_{3}$
(ii) $\mathrm{NH}_{3}, \mathrm{ROH}, \mathrm{H}_{2} \mathrm{O}$
(iii) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{SO}_{3}$
(iv) None of these
(f) The units of heat are: 2
(i) Degree and calorie
(ii) Calorie and Joule
(iii) Degree and Joule
(iv) Degree and ergs
(g) The rate of reaction is doubled for every 10° 2 rise in temperature. The increase in reaction rate as a result of temperature rise from 10° to 100° is :
(i) 112
(ii) 400
(iii) 512
(iv) 614
(h) An atom at the corner of a simple cubic unit cell ($u c$) is shared by :
(i) $2 u \mathrm{c}$
(ii) $4 u c$
(iii) $8 u c$
(iv) $1 u c$
(i) $\mathrm{E}_{\mathrm{RP}}^{\mathrm{o}}$ for $\mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Sn}^{2+} / \mathrm{Sn}$ are -0.44

2 volt and -0.14 volt respectively. The standard e.m.f. for the cell

$$
\mathrm{Fe}^{2+}+\mathrm{Sn}(\mathrm{~s}) \longrightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{Sn}^{2+}
$$

is:
(i) 0.30 V
(ii) -0.58 V
(iii) 0.58 V
(iv) -0.30 V
(j) The oxidation state of the most

2 electronegative element in the products of the reaction between $\mathrm{BaO}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4}$ are :
(i) 0 and -1
(ii) -1 and -2
(iii) -2 and 0
(iv) -2 and +1
2. (a) Explain
(i) Heisenbergs uncertainty principle
(ii) Aufbau principle
(b) According to Bohr's theory, the electronic energy of hydrogen atom in $n^{\text {th }}$ Bohr orbit is given by

$$
\mathrm{E}_{\mathrm{n}}=\frac{-21.76 \times 10^{-19} \times \mathrm{Z}^{2}}{\mathrm{n}^{2}}
$$

where Z is the nuclear charge. Calculate the longest wavelength of light that will be needed to remove an electron from the third Bohr orbit of the He^{+}ion.
Given : Plank's constant $=6.626 \times 10^{-34} \mathrm{Js}$

$$
\text { Speed of light, } c=3.0 \times 10^{8} \mathrm{~ms}^{-1}
$$

3. (a) Fraction of the total volume occupied by atoms in simple cubic unit cell is :
(i) $\frac{\pi}{2}$
(ii) $\frac{\sqrt{3} \pi}{8}$
(iii) $\frac{\sqrt{2} \pi}{6}$
(iv) $\frac{\pi}{6}$

Justify your answer.
(b) Metallic gold crystalizes in the FCC lattice. The length of the cubic unit cell, $a=4.07 \AA$. Calculate the closest distance between gold atoms and the density of gold.

Atomic mass of $\mathrm{Au}=197 \mathrm{amu}$
and $1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}$
4. (a) The difference between heat of reaction at constant pressure and constant volume for the reaction,

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(l)+15 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

at $25^{\circ} \mathrm{C}$ in kJ is :
(i) $\quad-7.43$
(ii) +3.72
(iii) -3.72
(iv) +7.43
(Given : $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$)

Justify your answer.
(b) The bond dissociation energy of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104, 58 and $103 \mathrm{kcal} /$ mole respectively. Calculate the enthalpy of formation of HCl gas.
5. (a) If the rate constant, k of a reaction is 1.6×10^{-3} mole lit ${ }^{-1}$. min^{-1}, the order of reaction is :
(i) 0
(ii) 2
(iii) 1
(iv) 3

Justify your answer.
(b) If a reaction with $\mathrm{t}_{\frac{1}{2}}=69.3$ second, has a 3 rate constant value of 10^{-2} per second, the order is :
(i) 0
(ii) 1
(iii) 2
(iv) 3

Justify your answer
(c) The possible mechanism for the reaction:

4

$$
2 \mathrm{NO}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{NOBr}
$$

is

$$
\mathrm{NO}+\mathrm{Br}_{2} \xrightarrow{\text { fast }} \mathrm{NOBr}
$$

$$
\mathrm{NOBr}+\mathrm{NO} \xrightarrow{\text { slow }} 2 \mathrm{NOBr}
$$

Establish the rate law. Justify your answer.
6. (a) Enumerate the postulates of Bohr's atomic models. Deduce the expression for atomic radius and energy.
(b) Five mole of oxygen at $127^{\circ} \mathrm{C}$ undergoes isothermal compression from 2 atm to 10 atm . What is the entropy change of the system ? The system actually gave up 24.7693 kJ of heat during the transformation. Is the transformation reversible or irreversible?
Given : $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}$
7. (a) In which mode of expression, the 2 concentration of solution remains independent of temperature?
(i) Molarity
(ii) Normality
(iii) Formality
(iv) Molality

Justify your answer.
(b) Which of the following 0.1 M aqueous solution will have the lowest freezing point?
(i) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(ii) NaCl
(iii) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
(iv) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Justify your answer.
(c) The vapour pressure of pure benzene at a certain temperature is 640 mmHg . A nonvolatile nonelectrolyte solid weighing 2.175 g is added to 39 g of benzene. The vapour pressure of the solution is 600 mm Hg . What is the molecular weight of the solid substance?
8. (a) Calculate the approximate pH of a 5 $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})$ solution. The first and second dissociation constants of $\mathrm{H}_{2} \mathrm{~S}$ are 1×10^{-7} and 1.3×10^{-14} respectively.
(b) For the reaction, 5
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$,
$\mathrm{K}_{\mathrm{p}}=0.1147 \mathrm{~atm}^{-2}$ at $327^{\circ} \mathrm{C}$. What will be the value of K_{c} at $327^{\circ} \mathrm{C}$?
$\mathrm{R}=0.0821 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
9. (a) Describe in detail the function of lead 4storage battery.
(b) Explain the following bonds with example(any three) :
(i) Ionic bond
(ii) Covalent bond
(iii) Metallic bond
(iv) Hydrogen bond
10. (a) $\mathrm{Ce}(58)$ is a member of: 1
(i) s-block
(ii) p-block
(iii) d-block
(iv) f-block
(b) Which metal cannot be obtained by 1 electrolysis ?
(i) Ag
(ii) Mg
(iii) Cu
(iv) Cr
(c) The volume of ' 10 vol' of $\mathrm{H}_{2} \mathrm{O}_{2}$ required to 1 liberate 500 ml of O_{2} at $S T P$ is :
(i) 50 ml
(ii) 25 ml
(iii) 100 ml
(iv) 125 ml
(d) The metallic lusture exhibited by sodium is 1 explained by :
(i) Diffusion of sodium ions
(ii) Oscillation of loose electrons
(iii) Excitation of free protons
(iv) Existance of body centred cubic lattice
(e) Which of the following is the strongest acid ?
(i) $\mathrm{SO}(\mathrm{OH})_{2}$
(ii) $\mathrm{SO}_{2}(\mathrm{OH})_{2}$
(iii) $\mathrm{ClO}_{2}(\mathrm{OH})$
(iv) $\mathrm{ClO}_{3}(\mathrm{OH})$
(f) In compound Buta-1, 2-diene, the state of hybridizations exist are :
(i) $s p, s p^{2}, s p^{3}$
(ii) $s p^{2}, s p^{3}, s p^{3} d^{1}$
(iii) $s p, s p^{3}, s p^{3} d^{1}$
(iv) $s p^{3}, s p^{3} d^{1}, s p^{3} d^{2}$
(g) The enolic form of acetone contains : $\quad 1$
(i) 9 sigma bonds, 1 pi bond and 2 lone pairs
(ii) 8 sigma bonds, 2 pi bonds and 1 lone pair
(iii) 10 sigma bonds, 1 pi bond and 1 lone pair
(iv) 9 sigma bonds, 2 pi bonds and 1 lone pair
(h) Which of the following will have least hindered rotation about carbon-carbon bond?
(i) Ethane
(ii) Ethylene
(iii) Acetone (iv) Hexachloroethane
(i) The helical structure of proteins is stabilised 1 by :
(i) Peptide bonds
(ii) Dipeptide bonds
(iii) Hydrogen bonds
(iv) van der Waal's forces
(j) n-propyl alcohol and isopropyl alcohol are: 1
(i) Position isomerism
(ii) Chain isomerism
(iii) Tautomerism
(iv) Geometrical isomerism

