B.Tech. Civil (Construction Management) /

B.Tech. Civil (Water Resources Engineering)

Term-End Examination
June, 2010

ET-102 : MATHEMATICS III

Time : 3 hours Maximum Marks : 70

Note: Answer any ten questions. All questions carry equal marks. Use of calculator is allowed.

1. Show that the harmonic series of order p,

$$
\sum \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots
$$

is convergent for $p>1$, and divergent for $p \leq 1$.
2. Find the fourier series for the function

$$
f(x)=x, \quad-\pi<x<\pi,
$$

when $\quad f(x)=f(x+2 \pi)$.
3. Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=0,1, \infty$.
4. Evaluate $\oint_{\pi} \frac{1}{z-\mathrm{a}} \mathrm{d} z$
over any closed path enclosing the given point ' a '.
5. Find the general solution of the partial differential equation $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$.
6. If $2 \cos \theta=x+\frac{1}{x}$ and $2 \cos \phi=y+\frac{1}{y}$, show that one of the values of

$$
x^{m} y^{n}+\frac{1}{x^{m} y^{n}} \text { is } 2 \cos (\mathrm{~m} \theta+\mathrm{n} \phi) .
$$

7. Test for convergence of the series for all possible values of x :

$$
\frac{x}{1.2}+\frac{x^{2}}{3.4}+\frac{x^{3}}{5.6}+\frac{x^{4}}{7.8}+\cdots
$$

8. It is given that the rate of decay of radium varies as its amount present at that time. Assuming the 'half - life' of the radium to be 1600 years, find the percentage of the amount of radium disintegrated in 200 years.
9. Find the general solution of the differential equation.
$\left(D^{2}-13 D+12\right) y=3 e^{-2 x}$
10. (a) Find the Laplace transforms of $f(t)=\mathrm{e}^{\mathrm{at}}$, a is real and $t \geqslant 0$.
(b) Find the Laplace transforms of cosh at
11. Find the inverse Laplace transforms of $\frac{s+2}{s^{2}-4 s+13}$.
12. If $w=\phi+i \psi$ represents the complex potential for an electric field and

$$
\psi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}
$$

determine the function ϕ.
13. Determine the poles of the function
$f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$ and the residue at each
pole. Hence evaluate $\int_{C} f(z) \mathrm{dz}$, where C is the circle $/ z /=2.5$.
14. Apply Hurwitz - Routh Criterion to determine the stability of the systems whose characteristic equations are given by :
(a) $s^{4}+5 s^{3}+2 s+10=0$
(b) $s^{4}+7 s^{3}+17 s^{2}+17 s+6=0$
15. Obtain the differential equation representing this system as shown in the adjoining figure.

