B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination
June, 2010

ET-101(A) : MATHEMATICS-I.

Time : 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of calculator is permitted

1. Answer any five of the following :
$5 \times 4=20$
(a) Draw the graph of the function

$$
f(x)=\left\{\begin{aligned}
-1+x^{2}, & -1 \leq x<0 \\
x, & 0 \leq x<1 \\
2, & x=1 \\
-x+2, & 1<x<2 \\
0, & 2<x \leq 3
\end{aligned}\right.
$$

and discuss its continuity on $[-1,3]$
(b) Discuss the differentiability and continuity of the function $y=3|x|+1$ at $x=0$.
Also plot its graph on $[-1,1]$
(c) Find where the tangent is parallel to the x-axis for the curve $y^{3}=x^{2}(2-x)$.
(d) If $f(x)=x^{2}-\frac{1}{x^{2}}$, prove that

$$
f(x)=-f\left(\frac{1}{x}\right) .
$$

(e) Expand $\tan \left(x+\frac{\pi}{4}\right)$ as far as the term x^{4}.
(f) Find the diameter and height of a cylinder of maximum volume which can be cut from a sphere of radius 12 cm .
(g) If $u=\sqrt{y z}, v=\sqrt{z x}, w=\sqrt{x y}$ and $x=\mathrm{r} \sin \phi \cos \theta, y=\mathrm{r} \sin \phi \sin \theta, z=r \cos \phi$, then show that

$$
\frac{\partial(u, v, w)}{\partial(r, \theta, \phi)}=\frac{1}{4} r^{2} \sin \phi
$$

2. Answer any four of the following :
(a) Evaluate $\int x^{2} \cdot \mathrm{e}^{x} \mathrm{~d} x$.
(b) Show that the area of the region that lies inside the circle $r=a \cos \theta$ and outside the cardiod $r=a(1-\cos \theta)$ is $\frac{a^{2}}{3}(3 \sqrt{3}-\pi)$ sq.unit.
(c) Evaluate $\int_{0}^{\pi / 3} \sqrt{\left(1-\frac{1}{3} \sin x\right)} \mathrm{d} x$ correct to three decimal places using Simpson's rule with 6 intervals.
(d) Find the arc length of the loop of the curve $9 a y^{2}=(x-2 a)(x-5 a)^{2}$.
(e) Solve the differential equation:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=3
$$

(f) Solve $\cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=\sin x, y(0)=2$.
3. Answer any four of the following:
(a) (i) Prove that
$\hat{i} \times(\overrightarrow{\mathbf{a}} \times \hat{i})+\hat{j} \times(\overrightarrow{\mathbf{a}} \times \hat{j})+\hat{k} \times(\overrightarrow{\mathbf{a}} \times \hat{k})=2 \overrightarrow{\mathbf{a}}$
for any arbitrary vector $\overrightarrow{\mathbf{a}}$.
(ii) Show that

$$
(\vec{a}+\vec{b}) \cdot[(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})]=2[\vec{a}, \vec{b}, \vec{c}]
$$

(b) Find the directional derivative of $4 x z^{3}-3 x^{2} y^{2} z^{2}$ at $(2,-1,2)$ along the z-axis.
(c) Show that the vector field defined by $\quad \overrightarrow{\mathrm{F}}=2 x y z^{3} \hat{i}+x^{2} z^{3} \hat{j}+3 x^{2} y z^{2} \hat{k} \quad$ is irrotational. Find a scalar potential u such that $\vec{F}=\mathrm{g} \mathrm{radu}$.
(d) If $\overrightarrow{\mathrm{A}}=x y \hat{i}-z \hat{j}+x^{2} \hat{k}$ and C is the curve $x=t^{2}, y=2 t, z=t^{3}$ from $t=0$ to $t=1$, evaluate $\int_{C} \vec{A} \times \mathrm{dr}$.
(e) $\overrightarrow{\mathrm{A}}=(1,1,1)$ and $\overrightarrow{\mathrm{C}}=(0,1,-1)$ are two given vectors. Then prove that a vector \vec{B} satisfying the equations $(\vec{A} \times \vec{B})=\vec{C}$ and $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=3$ is $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$.
(f) Use Green theorem to evaluate $\oint_{C}\left[\left(x^{2}+x y\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y\right]$
where C is the boundary of the square $y= \pm 1, x= \pm 1$.
4. Answer any six of the following :
(a) Check for the consistency of the system of equations.
$2 x-y+z=4$
$x+2 y-3 z=8$
$4 x+3 y-5 z=10$
(b) Prove that the matrix given below is orthogonal :
$\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$
(c) Show that

$$
\left|\begin{array}{lll}
A_{1} & B_{1} & C_{1} \\
A_{2} & B_{2} & C_{2} \\
A_{3} & B_{3} & C_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|^{2}
$$

where the capital letters denote the cofactor of the corresponding small letters.
(d) Define the rank of a matrix. Show that the rank of the product of two matrices cannot exceed the rank of either matrix.
(e) Determine values of ' a ' for which the following system of linear equations has
(i) a unique solution
(ii) infinite number of solutions

$$
\begin{aligned}
& x+y+z=2 \\
& x+2 y+z=-2 \\
& x+y+(a-5) z=a-4
\end{aligned}
$$

(f) Find the eigen values and the eigen vectors of the matrix.
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(g) Prove that a matrix is singular if, and only if one of its eigen values is zero.
(h) For $\mathrm{A}=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, show that $A^{n}=A^{n-2}+A^{2}-I$, for $n \geqslant 3$.
(i) The eigen vectors of a 3×3 matrix A corresponding to the eigen values $1,2,3$ are $[-1,-1,1]^{\mathrm{T}},[0,1,0]^{\mathrm{T}}$ and $[0,-1,1]^{\mathrm{T}}$ respectively. Find the matrix A.

