BME-029

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

01564

Term-End Examination

June, 2010

BME-029 : ROBOTICS

Tim	ie : 3 ha	ours Maximum Mark	Maximum Marks : 70	
Note : Answer any seven questions. All questions carry equal marks.				
1.	(a)	Name and describe the robot sub systems.	7	
	(b)	Sketch a robot arm in cylindrical coordinates.	3	
2.	(a)	Discuss the advantages and disadvantages of hydraulic actuators in robot.	6	
	(b)	Write a note on permanent magnet stepper motor.	4	
3.	(a)	What is an encoder ? What are the types of encoder ?	5	
	(b)	Describe the functions of strain gauge and piezoelectric sensor. Are these internal or external sensors ?	5	
BME-029		1 8	Р.Т.О .	

- Describe the non manufacturing applications of 10 robots. Discuss safety issues in robot application.
- 5. (a) The reference frame can have pure 6 translation, pure rotation or both. Show these three transformation by sketching reference frames before and after transformation and write transformation matrix in each case.
 - (b) Sketch three arms connected by revolute **4** joints.
- 6. (a) What do you understand by position6 analysis ? Describe how to solve a direct problem ?
 - (b) Sketch an articulated arm of a robot and **4** explain its motion.
- 7. (a) What is "Lagrangian"? How is Lagrangian 5 correlated with forces in the links of a kinematic chain?
 - (b) The kinetic energy, T and potential energy 5U of robot links are expressed as :

$$T = \frac{1}{2} \dot{\Theta}^T I \dot{\Theta}$$
 and

$$\mathbf{U} = -\sum_{i=1}^{n} m_i \mathbf{c}_i^{\mathrm{T}} \mathbf{g}$$

Explain the meanings of Θ , *I*, m_i , c_i and g.

BME-029

2

8. For a joint, initial angle is Θ_0 at time t = 0 and the final angle is Θ_f at time $t = t_f$. The end effector start with a velocity $\dot{\Theta}_0$ and acceleration $\ddot{\Theta}_0$ and it stops with velocity $\dot{\Theta}_f$ and acceleration $\ddot{\Theta}_f$. Write these boundary conditions in time variable and a polynomial in time, t to express Θ (t). Derive expressions for coefficient of polynomial.

- 9. (a) What are overdamped, underdamped and 4 critically damped systems. Show these characteristics on graph between displacement, x(t) and time, t.
 - (b) In a mass, damper and spring system, 6 mass = 1, damping coefficient = 5 and spring constant = 6. Find equation to displacement x(t).
- 10. (a) What is control law ? Express the force to 6 be applied by an actuator in form of an equation. Express closed loop dynamics in equations. What conclusions are drawn from these equations ?
 - (b) What are lead through programming and 4 walk through programming of a robot ?

3