BACHELOR OF TECHNOLOGY IN

MECHANICAL ENGINEERING

(COMPUTER INTEGRATED
MANUFACTURING)
Term-End Examination
June, 2010
BME-029 : ROBOTICS
Time : 3 hours
Maximum Marks : 70
Note : Answer any seven questions. All questions carry equal marks.

1. (a) Name and describe the robot sub systems. 7
(b) Sketch a robot arm in cylindrical 3 coordinates.
2. (a) Discuss the advantages and disadvantages 6 of hydraulic actuators in robot.
(b) Write a note on permanent magnet stepper 4 motor.
3. (a) What is an encoder? What are the types of 5 encoder ?
(b) Describe the functions of strain gauge and 5 piezoelectric sensor. Are these internal or external sensors ?
4. Describe the non - manufacturing applications of robots. Discuss safety issues in robot application.
5. (a) The reference frame can have pure translation, pure rotation or both. Show these three transformation by sketching reference frames before and after transformation and write transformation matrix in each case.
(b) Sketch three arms connected by revolute joints.
6. (a) What do you understand by position analysis ? Describe how to solve a direct problem?
(b) Sketch an articulated arm of a robot and explain its motion.
7. (a) What is "Lagrangian" ? How is Lagrangian correlated with forces in the links of a kinematic chain?
(b) The kinetic energy, T and potential energy

U of robot links are expressed as :

$$
\begin{aligned}
& \mathrm{T}=\frac{1}{2} \dot{\theta}^{\mathrm{T}} \mathrm{I} \dot{\theta} \text { and } \\
& \mathrm{U}=-\sum_{i=1}^{n} m_{i} \mathrm{c}_{i}^{\mathrm{T}} \mathrm{~g}
\end{aligned}
$$

Explain the meanings of $\Theta, I, m_{i^{\prime}} c_{i}$ and g.
8. For a joint, initial angle is Θ_{0} at time $t=0$ and the final angle is θ_{f} at time $t=t_{f}$. The end effector start with a velocity $\dot{\Theta}_{0}$ and acceleration $\ddot{\theta}_{0}$ and it stops with velocity $\dot{\theta} f$ and acceleration $\ddot{f} f$. Write these boundary conditions in time variable and a polynomial in time, t to express $\theta(t)$. Derive expressions for coefficient of polynomial.
9. (a) What are overdamped, underdamped and critically damped systems. Show these characteristics on graph between displacement, $x(\mathrm{t})$ and time, t .
(b) In a mass, damper and spring system, mass $=1$, damping coefficient $=5$ and spring constant $=6$. Find equation to displacement $x(\mathrm{t})$.
10. (a) What is control law? Express the force to be applied by an actuator in form of an equation. Express closed loop dynamics in equations. What conclusions are drawn from these equations ?
(b) What are lead through programming and walk through programming of a robot?

