BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING)
 Term-End Examination

June, 2010

BME-021 : PRINCIPLES OF ELECTRICAL AND ELECTRONICS SCIENCE

Time : 3 hours
Maximum Marks : 70
Note : Answer seven questions. Question no. 1 is compulsory. Answer any three questions from Section-A and any three from Section-B. Symbols and abbreviations carry their usual meaning.

1. State whether the following assertions are true or 10 false :
(a) In 8085 Microprocessor, when MOVA, D instruction is executed, the register D still retains the original data.
(b) In RS-232, the logic voltages corresponding to logic 0 and 1 are reversed to avoid charge build-up on the lines.
(c) If the input to a digital buffer is logic 1, then the output would be logic 0 .
(d) Án astable multivibrator can be designed using an OP.AMP. as a comparator.
(e) A differential amplifier amplifies the difference between two input signals.
(f) The frequency of a periodic wave is inverse of its time period.
(g) If $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ capacitors are connected in series, then $C_{\text {Equivalent }}=C_{1}+C_{2}+C_{3}$.
(h) In an induction motor the speed of the rotating magnetic field is slightly higher than the rotor speed.
(i) Reluctance of a magnetic circuit is directly proportional to its length and inversely proportional to its area of cross-section.
(j) Introduction of an air-gap in a magnetic circuit decreases its reluctance.

SECTION - A

Answer any three questions from this section :
2. (a) What is temperature coefficient α ? Give its units. How does the resistance of a metal conductor vary with temperature? Give a mathematical expression showing change in resistance with change in temperature.
(b) The tungsten filament of an electric bulb has a resistance of 50 ohms at $0^{\circ} \mathrm{C}$. Find its resistance when it is lighted and attains a temperature of $2000^{\circ} \mathrm{C}$; the temperature coefficient at $0^{\circ} \mathrm{C}, \alpha_{0}$ is $0.0045 /{ }^{\circ} \mathrm{C}$.
3. (a) State and explain Kirchhoff's current law.
(b) In the circuit of Figure-1, V is 9 volts. Calculate the voltage V_{a} at node a using Kirchoff's current law.

Figure - 1
4. (a) A pure capacitance C is connected in series with a resistance R, and the combination is connected across a voltage source V_{s} of Frequency f. Write an expression for the current in the circuit. Draw a vector diagram showing voltage drops across R and C, the resultant voltage and current.
(b) In the circuit of Figure-2, V_{s} is a 169 volt, 50 Hz source with complex impedance of the source as $(5-\mathrm{j} 5)$ ohm. Calculate :
(i) the value of R_{L} for maximum power transfer to it.
(ii) the complex current I_{L}.
(iii) the magnitude $\left|\mathrm{I}_{\mathrm{L}}\right|$ of current.
(iv) $P_{\max }$ the maximum power transferred to load R_{L}.

5. (a) Briefly describe the terms as applied to magnetic circuits : flux density, magnetizing force, relative and absolute permeabilities, giving their units in M. K. S system. Give relation between MMF, S and ϕ in a magnetic circuit and draw analogy to an electric circuit.
(b) A magnetic circuit consists of an iron ring of mean circumference and cross-sectional area respectively of 80 cms and $12 \mathrm{~cm}^{2}$. A current of 2 A in the magnetizing coil of 200 turns produces a total flux ϕ of $\left(1.2 \times 10^{-3}\right)$ Webers in the iron ring. Calculate :
(i) flux density B in the iron ring,
(ii) the absolute permeability μ,
(iii) relative permeability μ_{r}
(iv) reluctance of the magnetic circuit.
6. (a) Briefly describe : Speed control of induction motors.
(b) A 3-phase, 6-pole induction motor is connected to a 400 volt, 50 Hz supply. Calculate :
(i) the speed of rotation of the stator magnetic field,
(ii) the speed of the rotor when the slip is 5%,
(iii) the frequency of the rotor current,
(iv) the frequency of the rotor current at stand still.
(c) What are the different applications of a squirrel cage and wound-rotor induction motors.

SECTION - B

Answer any three questions from this section :
7. (a) Briefly describe any two
(i) S-R Flip Flop
(ii) J-K Flip Flop
(iii) D-Flip Flop
(iv) T -Flip Flop
(b) In which 4 ways can data be shifted in the shift registers.
(c) Give the schematic diagram of a 3-stage ripple counter using $\mathrm{T}-$ Flip Flops and show timing signals at the Q_{1}, Q_{2}, Q_{3} outputs with reference to the clock signal. The Q outputs toggle at negative transition of the clock.
8. (a) Briefly describe different busses of an 8085 microprocessor.
(b) What are the different hardware interrupts in the 8085 microprocessor; give their priority. What interrupt is non-maskable.
(c) What operations do the following 8085 5 microprocessor instructions perform ? (write about any five)
(i) MOV C, B
(ii) ADI F2H
(iii) ORI 66 H
(iv) JMP 2050 H
(v) ANI 80 H
(vi) CMA
(vii) XRA C
(viii) HḶT
(ix) NOP
9. (a) What do α and β, in bipolar junction transistors, represent; derive an equation giving their relationship.
(b) Give the circuit schematic and gain equation of an I. C. operational amplifier in inverting configuration.
(c) Give the value of the feed-back resistance R_{2} to obtain a gain of 20 dB , if $R_{1}=1 \mathrm{k} \Omega$ is connected between the signal input and the OP.AMP.'s inverting input.
10. Write short notes on any two of the following:
(a) TRIAC
(b) MOSFET
(c) IGBT
(d) Zener diode
11. (a) Give schematic diagram of an astable multivibrator using the 555 timer I. C. Show how external resistances R_{A} (connected between supply and pin 7), R_{B} (connected between pin 6 and pin 7) and external capacitor C (connected between pin 6 and ground) are used to obtain T_{H} (High) and T_{L} (Low) time periods for the generation of the output wave form.
(b) How would you generate a near square wave using the above timer I.C ?
(c) Calculate the value of the capacitor C , a square wave of 5 kHz , if $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=50 \Omega$.

