BME-010

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

0043

S

Term-End Examination

June, 2010

BME-010 : TOOL ENGINEERING AND MANAGEMENT

Not	te: A	Answer any seven questions. Use of calculator is llowed.
1.	(a)	What is milling ? Explain the milling operations with the help of neat sketch. 5+5=10
	(b)	A 120 mm diameter cutter having 10 teeth cuts steel bar with a width of 100 mm and feed rate 180 mm/min. The depth of cut is taken as 6 mm. Find the minimum and maximum chip thickness in face milling operation.
2.	(a)	State some of the important characteristics of following tool materials.5+5=10(i)High speed steels(ii)Ceramics

1

BME-010

P.T.O.

- (b) In an orthogonal cutting operation, the depth of cut is 4 mm, width is 16 mm, cutting speed is 0.7 m/s and the rake angle is 0°. The cutting force and thrust force are 1100 N and 800 N respectively. Shear angle is 45°. Calculate coefficient of friction between the chip and the tool. Calculate power required in Watt. Calculate length of shear plane.
- 3. (a)State locating principle. Describe various
types of locators.5+5=10
 - (b) List different types of fixtures. Explain working of milling fixture.
- 4. (a) Discuss with the help of a neat sketch the different parts of a simple cutting die. 5+5=10
 - (b) Briefly describe various types of forming tools with neat sketches.
- 5. (a) What are the various types of moulding machines ? Describe any two of them. 5+5=10
 - (b) Describe various types of containers used in foundry.
- 6. (a) What are the various causes of accidents ? Discuss the various safety norms in the industry. 5+5=10
 - (b) Discuss various steps involved in laying out center hole using centre head.

BME-010

2

7.	(a)	What is the purpose of laying out the	
		workpiece ? 5+5=10	
	(b)	Discuss briefly the preparation of surface for	
		layout. How do you lay parallel line to an edge ?	
8.	(a)	How are the guideways classified ? Explain	
		with figures the guideways with sliding	
		frictions. 5+5=10	
	(b)	Explain the design criteria for selection of material for machine tool structure.	
•			
9.	(a)	Discuss the various problems in setup	
		planning. $5+5=10$	
	(b)	What is setup time and economic batch size (EBS) ?	
10.	(a)	Explain in detail STEP-NC enabled	
		intelligent control. 5+5=10	
	(b)	What are the challenges and opportunities for the future STEP-NC ?	

BME-010

3

.