No. of Printed Pages : 6

BME-009

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

0188

 \sim

Term-End Examination

June, 2010

BME-009 : COMPUTER PROGRAMMING AND APPLICATION

Tim	e:3h	ours Maximum Marks :	Maximum Marks : 70		
Not	te:A	Attempt any five questions. All questions carry eq narks. Use of calculator is allowed.	ual		
1.	(a)	Compute the real roots of the equation $r_{10}x - 1.2 = 0$,	7+7		
		correct to three decimal places by Newton Raphson method.			
	(b)	Find the real root of the equation $x^3 - 4x - 9 = 0$			
		correct to three decimal places using Bisection method.			
2.	(a)	Find by iterative method, a real root of the 7 following equation : $2x - \log_{10} x = 7$	7+7		

1

BME-009

P.T.O.

(b) Solve the following system of equations

2x + y + 4z = 128x - 3y + 2z = 20

4x + 11y - z = 33

by Crout's method

(a) A rocket is launched from the ground. Its 7+7
 acceleration is registered during the first 80
 seconds and is given in the following table.

Using Simpson's $\frac{1}{3}$ rd rule, find the velocity

of the rocket at t = 80 seconds.

t (sec)	0	10	20	30	40	50	60	70	80
f (cm/sec ²	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

(b) Solve the following system of linear equationby Gauss Elimination method :

2x - 6y + 8z = 245x + 4y - 3z = 23x + y + 2z = 16

4. (a) Find the real root of the equation : 7+7 $xe^{x}-3=0$

by Regula - Falsi method, correct to three decimal places.

BME-009

2

(b) Solve the following system of linear equations by Gauss - Seidal iteration method.

$$2x + y + 4z = 12$$
$$8x - 3y + 2z = 20$$
$$4x + 11y - z = 33$$

Perform only four iteration. Assume to start with $(x_0, y_0, z_0) = (0, 0, 0)$.

5. (a) Use Lagrange's interpolation formula to find 7+7 y when x=5 from the following data :

<i>x</i> :	0	1	3	8
y :	1	3	13	123

(b) Using Runge - Kutta method of order four, find *y* (0.2), for the equation :

$$\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{y-x}{y+x}, \quad y(0)=1.$$

take
$$h = 0.2$$
.

BME-009

L.

3

(a) The following statement is illegal. Why? How would you correct it? 2+4+4+4 main ()
{
int i=j=k=0;
}
(b) Write an equivalent C⁺⁺ expressions for the

following expressions :

(i) $ut + \frac{1}{2} ft^2$ (ii) $\sqrt{\sin a + \tan^{-1} a - e^{2x}}$ (iii) $|a| + b \ge |b|a$ 3

(iv)
$$\left(\frac{3x+5y}{5x+3y}-\frac{8xy}{2yx}\right)^{\frac{1}{2}}$$

- (c) Suppose A, B, C are integer variables A=3, B=3, C=-5, and X, Y, Z are floating point variables where X=8.8, Y=3.5, Z=-5.2. Determine the value of the following expressions.
 - (i) A % C (ii) $A \ast B / C$
 - (iii) (A^*C) %B (iv) int (X)% int (Y)

4

BME-009

6.

(d) What will be the output produced by following code :

for $(i = 10; i \le 50; i + = 10)$

j = i/2;cout << j << " ";

{

•

0

7. (a) Write a C⁺⁺ program and print the values 7+7 of f(x) given by :

$$f(x) = \frac{x^2 + 1.5x + 5}{x - 3}$$

for x = -10 to 10,

x should take values -10, -8, -6, ..., 6, 8, 10.

- (b) Given three numbers A, B, and C, write a C⁺⁺ program_to write their values in descending order.
- 8. (a) Two one dimensional arrays C and D 7+7 have 25 elements each. Write a C⁺⁺ program to compute and print the following quantities :

5

(i)
$$B = \sum_{i=1}^{25} (Ci - Di)^2$$

(ii)
$$P = \sum_{i=1}^{25} C i D i$$

BME-009

(b) (i) What is the output of the following code fragment ?

for (int i = 1; i < 10; i + +);

cout << *i*;

(ii) How many times is the following loop executed ?

int s = 0, i = 0; do s + = iwhile (i < 5);

6

ι

h......

s.

•