BACHELOR OF TECHNOLOGY IN

Term-End Examination
June, 2010
BME-001 : ENGINEERING MATHEMATICS-I

Time : 3 hours \quad Maximum Marks : 70
Note: All questions are compulsory. Use of calculator is
allowed. Statistical tables are allowed.

1. Answer any five of the following : $5 \times 4=20$
(a) Evaluate any one of the following:
(i) Find the positive integer ' n ' so that :

$$
\operatorname{Lim}_{x \rightarrow 3} \frac{x^{n}-3^{n}}{x-3}=108
$$

(ii) If the function f be defined as:

$$
\begin{gathered}
f(x)=x \text { if } 0<x<\frac{1}{2} \\
0 \text { if } x=\frac{1}{2} \\
x-1 \text { if } \frac{1}{2}<x<1
\end{gathered}
$$

discuss the existence of $\lim _{x \rightarrow 1 / 2} f(x)$.
(b) Discuss the continuity of the function :

$$
f(x)=\left\{\begin{array}{l}
2 x, \text { if } x<2 \\
2, \text { if } x=2 \\
x^{2}, \text { if } x>2
\end{array}\right.
$$

at $x=2$.
(c) Attempt any one of the following:
(i) Let $f(x)=x(x-1)(x-2), x \in[0,2]$. Prove that f satisfies the conditions of Rolle's theorem and there is more than one c in $(0,2)$ such that $f^{\prime}(\mathrm{c})=0$.
(ii) Investigate the maximum and minimum values of:

$$
x^{2} y^{2}-5 x^{2}-8 x y-5 y^{2}
$$

(d) Attempt any one of the following:
(i) Evaluate $\int_{0}^{\pi} \frac{1}{5+4 \cos x} \mathrm{~d} x$
(ii) Find the area of the region in first quadrant bounded by x-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$.
(e) Solve any one of the following:
(i) $\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) y$

$$
=\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) x \frac{\mathrm{~d} y}{\mathrm{~d} x}
$$

(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}+y \tan x=2 x+x^{2} \tan x, y(0)=1$.
(f) Find the equations of the normal to the surface:
$36 x^{2}+9 y^{2}+5 z=72$ at $(0,2,3)$.
2. Answer any four of the following :
(a) Prove that:

$$
(\vec{a} \times \vec{b})^{2}=\left|\begin{array}{ll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\
\vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{a}
\end{array}\right|
$$

(b) Find the directional derivative of $f(x, y)=\frac{x^{2}+y^{2}}{x-y}$ at $(1,2)$ along the vector
$3 \hat{i}+2 \hat{j}-5 \hat{k}$.
(c) A force $-5 \hat{i}+6 \hat{j}-3 \hat{k}$ displaces a particle at $(1,2,3)$ to the point $(-1,-3,5)$. Find the work done by the force.
(d) Attempt any one of the following:
(i) A fluid motion is given by :

$$
\overrightarrow{\mathrm{q}}=(y+z) \hat{\mathrm{i}}+(z+x) \hat{\mathrm{j}}+(x+y) \hat{\mathrm{k}} .
$$

Is this motion irrotational ?
(ii) Is the gradient of:

$$
\frac{\mathrm{C}}{|\vec{r}|}, \overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{\mathrm{j}}+z \hat{\mathrm{k}}, \text { for }|\vec{r}|>0
$$

a solenoidal vector ?
(e) Let a curve C has parametric representation
as $x=\sin \mathrm{t}, y=\sin \mathrm{t}, 0 \leq \mathrm{t} \leq \frac{\pi}{2}$.

Evaluate $\oint f(x, y) \mathrm{d} x$,
when $f(x, y)=x^{2}+y$.
(f) Attempt any one of the following:
(i) Use Green's Theorem to evaluate :

$$
\oint_{C}(x-2 x y) \mathrm{d} x+\left(x^{2}+3 x y^{2}\right) \mathrm{d} y,
$$

where C is the boundary of the region

$$
y^{2}=8 x, x=2 .
$$

(ii) If

$$
\overrightarrow{\mathrm{F}}=(x-y) \hat{\mathrm{k}}+(y-z) \hat{\mathrm{j}}+(z-x) \hat{\mathrm{i}}
$$

and C is the bounding curve of intersection of paraboloid $z=4-x^{2}-y^{2}$ that lies above the plane $z=0$, verify Stoke's Theorem.
3. Attempt any six parts from the following: $6 \times 3=18$
(a) Evaluate $\left|\begin{array}{ccc}-a^{2} & a b & a c \\ b a & -b^{2} & b c \\ c a & c b & -c^{2}\end{array}\right|$.
(b) For what values of k, the following system of equations possess a non - trivial solutions :

$$
\begin{aligned}
& x+\mathrm{k} y+3 z=0 \\
& 3 x+\mathrm{k} y-2 z=0 \\
& 2 x+3 y-4 z=0
\end{aligned}
$$

(c) Express the following matrix as the sum of symmetric and show symmetric matrices :

$$
\left[\begin{array}{ccc}
6 & 1 & -5 \\
-2 & -5 & 4 \\
-3 & 3 & -1
\end{array}\right]
$$

(d) Find the inverse of the matrix :

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right]
$$

(e) Find the rank of the matrix :

$$
\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & -3 & -3 \\
5 & -3 & 3
\end{array}\right]
$$

(f) Find the eigen vectors of the matrix :

$$
\left[\begin{array}{ll}
4 & 1 \\
3 & 2
\end{array}\right]
$$

(g) Let $\mathrm{A}=\frac{1}{3}\left[\begin{array}{lll}x & 2 & 2 \\ 2 & 1 & y \\ 2 & z & 1\end{array}\right]$

If A is an orthogonal matrix, find the values of x, y and z.
4. Attempt any four of the following: $4 \times 4=16$
(a) An insurance company used 2000 scooter drivers, 4,000 car drivers and 6,000 truck drivers. The probability of accident is 0.01 , 0.03 and 0.15 respectively. One of insured persons meets an accident. What is the probability that he is a scooter driver.
(b) In a Binomial distribution with 6 independent trials, the probabilities of 3 and 4 successes are found to be 0.2457 and 0.0819 respectively. Find the parameter ' p ' of the Binomial distribution.
(c) There are 500 boxes each containing 1000 ballot papers for election. The chance that a ballot paper is defective is 0.002 . Assuming Poisson distribution for the number of defective ballot papers, find the number of boxes containing at least one defective ballot paper.

$$
\left(\text { Given } \mathrm{e}^{-2}=0.1353 \text { and } \mathrm{e}^{-3}=0.0498\right)
$$

(d) For a normal distribution with variate X, the mean is 12 and the s.d. is 4. Find $P(X \geq 20)$ and $P(X \leq 12)$. (Given area under the normal fan $z=0$ to $z=2$ is 0.4772).
(e) A random sample of size 7 from a normal population gave a mean 977.51 and a standard derivation 4.42 . Find a 95% confidence interval for the population mean. (Given $t_{0.05,6}=1.943, t_{0.059,7}=1.895$, $\mathrm{t}_{0.025,6}=2.447, \mathrm{t}_{0.025,7}=2.365$)
(f) A sample of size 20 drawn from a normal population gives a sample mean of 40 and a sample variance of 25 . Test this hypothesis, that the population standard deviation is 8 at 5% level of significance. (Given X^{2} at 5% level of significance $=30.14$ for 19 d.f.).

