B.Tech. IN AEROSPACE ENGINEERING PROGRAMME (BTAE)

Term-End Examination

June, 2010

BAS-009 : INTRODUCTION TO AERONAUTICS

Time : 3 hours
Maximum Marks : 70

> | Note: | Question number 1 is Compulsory. Attempt any six |
| ---: | :--- |
| | Questions from Question No. 2 to Question No. 10. |
| | Use of calculator is permitted. |

1. Fill in the blanks :
(a) Tail plane ahead of wing is known as . 1
\qquad design.
(b) Relative density $=$1
(c) The centroid of the distributed aerodynamic 1 load on the aerofoil is the point at which the equivalent concentrated force acts. The point is called \qquad -.
(d) The high speed limit velocity is \qquad 1 for the airplane and should never be exceeded.
(e) Form drag + skin friction drag $=$ \qquad1
(f) Free stream Mach number at which sonic 1 flow is first encountered at some location on the aerofoil is \qquad -.
(g) Location of separation point is determined
from the condition $\left(\frac{\partial u}{\partial y}\right)_{y=0}$
(h) Reynold number $=$ \qquad -
(i) The non dimensional quantity $\frac{\mathrm{V}}{\mathrm{nd}}$ is termed as \qquad _.
(j) Minimum drag condition
$C_{\text {Lmd }}=$ \qquad -.
2. (a) Describe the landmark stages and years in the process of aircraft development. Give examples.
(b) Define the following terms:
(i) aircraft
(ii) aerodynes
(iii) aerostat
(iv) helicopter
(v) hovercraft
3. Explain with neat sketches the variation in10 pressure distribution with angle of attack over an airfoil. What happens to pressure distribution at stalling?
4. (a) Explain the International Standard Atmosphere (ISA) with neat diagram.
(b) What is stability of atmosphere? Explain the condition required to be met for stability of atmosphere. Derive the equations mathematically.
5. (a) The stall of swept wing tends to occur first at tips, give reason.
(b) What are vortex generators? Explain how 5 they help to prevent airflow separation.
6. List and explain the types of wind tunnels.
7. (a) Explain different types of propellers. 5
(b) Derive slip stream velocity equation. 5
8. A sailplane weighs 5000 N has a wing area $7.5 \mathrm{~m}^{2}$.10 Its drag polar is given by $C_{D}=0.10+0.02 \mathrm{C}_{\mathrm{L}}{ }^{2}$. During one of the flight it started gliding from the height of 350 m in still air.
Determine :
(a) The greatest distance it can cover.
(b) The greatest duration of flight.
(c) Speed of flight in both cases.
9. Write short notes on following :
(a) Monocoque construction
(b) High lift devices
10. (a) Derive the Brequet equation for jet engine aircraft.
(b) An aircraft weighs 3360000 N and is flying 5 at the condition where $\mathrm{L} / \mathrm{D}=10$. What is the thrust required?
