BAS-009 No. of Printed Pages: 4 **B.Tech. IN AEROSPACE ENGINEERING** PROGRAMME (BTAE) ∞ **Term-End Examination** 3 June, 2010 **BAS-009: INTRODUCTION TO AERONAUTICS** Time: 3 hours Maximum Marks: 70 Note: Question number 1 is Compulsory. Attempt any six Questions from Question No. 2 to Question No. 10. Use of calculator is permitted. Fill in the blanks: Tail plane ahead of wing is known as ___ design. Relative density = _ 1 The centroid of the distributed aerodynamic load on the aerofoil is the point at which the equivalent concentrated force acts. The point is called _ The high speed limit velocity is ____ 1 for the airplane and should never be exceeded. Form drag + skin friction drag =_ Free stream Mach number at which sonic flow is first encountered at some location on the aerofoil is ___

- (g) Location of separation point is determined 1 from the condition $\left(\frac{\partial u}{\partial y}\right)_{y=0}$
- (h) Reynold number = _____. 1
- (i) The non dimensional quantity $\frac{V}{nd}$ is termed 1
- (j) Minimum drag condition $C_{Lmd} =$ _____.
- 2. (a) Describe the landmark stages and years in the process of aircraft development. Give examples.
 - (b) Define the following terms: 5
 - (i) aircraft
- (ii) aerodynes
- (iii) aerostat
- (iv) helicopter
- (v) hovercraft
- 3. Explain with neat sketches the variation in pressure distribution with angle of attack over an airfoil. What happens to pressure distribution at stalling?
- 4. (a) Explain the International Standard 5
 Atmosphere (ISA) with neat diagram.

5	the condition required to be met for stability of atmosphere. Derive the equations mathematically.	(D)	
5	The stall of swept wing tends to occur first at tips, give reason.	(a)	5.
5	What are vortex generators? Explain how they help to prevent airflow separation.	(b)	
10	et and explain the types of wind tunnels.	List	5.
5	Explain different types of propellers.	(a)	7.
5	Derive slip stream velocity equation.	(b)	-
10	sailplane weighs 5000N has a wing area 7.5 m^2 . drag polar is given by $C_D = 0.10 + 0.02C_L^2$. aring one of the flight it started gliding from the height of 350 m in still air.	Its of Dur	3.
		(a)	
	•	(b)	
	ŭ	(c)	
10	Write short notes on following:		
	Monocoque construction	(a)	
	High lift devices	(b)	

- **10.** (a) Derive the Brequet equation for jet engine aircraft.
 - (b) An aircraft weighs 3360000 N and is flying at the condition where L/D = 10. What is the thrust required?