B.TECH. IN AEROSPACE ENGINEERING
 PROGRAMME (BTAE)
 Term-End Examination
 June, 2010
 BAS-008 : STRENGTH OF MATERIALS

00604
Time : 3 hours Maximum Marks : 70
Note: (i) Answer any five questions.
(ii) All questions carry equal marks.
(iii) Use of calculator is permitted.

1. (a) A copper bar 200 mm long, 20 mm diameter
is subjected to an axial load of 30 kN . If E for copper $=105 \mathrm{kN} / \mathrm{mm}^{2}$ and ν for copper is 0.35 . What are changes in length and diameter ? Load is compressive.
(b) A 3 m long solid rectangular bar of cross section $10 \mathrm{~mm} \times 15 \mathrm{~mm}$ is subjected to a compressive force of 150 kN . What is the change in length of the bar? Also find the strain and stress produced in the bar.

Take: $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
2. (a) A flat steel strip $30 \mathrm{~mm} \times 6 \mathrm{~mm}$ makes a $7+7$ composite bar with aluminium strip $30 \mathrm{~mm} \times 8 \mathrm{~mm}$ so as to make a section of $30 \mathrm{~mm} \times 14 \mathrm{~mm}$. Length of composite strip is 500 mm . Composite strip is subjected to an axial compressive load P such that contraction in bar is 0.2 mm . What is the magnitude of P ? What are the stresses developed in steel and aluminium strips ?

Take :
$\mathrm{E}_{\text {steel }}=210 \mathrm{kN} / \mathrm{mm}^{2}$;
$\mathrm{E}_{\text {aluminium }}=70 \mathrm{kN} / \mathrm{mm}^{2}$.
(b) Figure 1 shows a triangular element of a stressed body. Normal and shear stresses on two perpendicular planes $B C$ and $A C$ are shown in figure. Determine the normal and shear stresses on inclined plane $A B$, inclined at an angle of 30° to the plane BC .

3. (a) Two parallel walls 6 m apart are stayed $7+7$ together by a steel rod 20 mm diameter, passing through metal plates and nuts at each end. The nuts are tightened, when the rod is at a temperature of $100^{\circ} \mathrm{C}$. Determine the stress in the rod, when the temperature falls down to $20^{\circ} \mathrm{C}$, if :
(i) the ends do not yield, and
(ii) the ends yield by 1 cm .

Take $E=2 \times 10^{5} \mathrm{kN} / \mathrm{mm}^{2}$,
and $\alpha=12 \times 10^{-6} \mathrm{k}^{-2}$.
(b) A bar of different cross - section is subjected to a tensile force of 50 kN as shown in figure-2. Find the stresses in different sections and the total elongation produced in the bar. Take: $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.

Figure-2
4. (a) A 3 m bar is initially at a temperature of $24^{\circ} \mathrm{C} .7+7$ It is heated to raise its temperature to $80^{\circ} \mathrm{C}$.
Estimate the free expansion of the bar. If the expansion is not allowed, find the stress in the bar.
Take : $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}, \alpha=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}$
(b) A beam $A B, 6 \mathrm{~m}$ long, simply supported at end carries 6 kN and 12 kN loads at distances of 2 m and 4 m from A as shown in figure 3. Draw the SF and BM diagrams of the beam.

Figure - 3
5. (a) A cantilever beam carries a uniformly $7+7$ distributed load of $2 \mathrm{t} / \mathrm{m}$ over the entire length of 6 m and point loads $5 \mathrm{t}, 3 \mathrm{t}, 7 \mathrm{t}$ and 2 t at a distance of $2 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$ and 6 m respectively from the fixed end. Draw the SF and BM diagrams of the beam.

Figure-4
(b) A 5 m cantilever beam of cross - section $150 \mathrm{~mm} \times 300 \mathrm{~mm}$ weighing $0.05 \mathrm{kN} / \mathrm{m}$ carries an upward concentrated load of 30 kN at its free end as shown in figure 5. Determine the maximum bending stress at a section 2 m from the free end.

Figure - 5
6. (a) A solid steel rod of 5 m length and $10 \mathrm{~mm} \quad 7+7$ diameter is subjected to an axial load of 5 kN . Find the stresses induced in the rod if the load is applied:
(i) gradually,
(ii) suddenly, and
(iii) with impact after falling through a height of 150 mm . Also find the strain energy stored in the rod under the given conditions.
Take : $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.
(b) A rod of diameter 10 mm and length 1.5 m hangs vertically from the ceiling of a roof. A coller is attached at its lower end on which a load of 250 N falls from a height of 200 mm . Find the strain energy absorbed and the instantaneous deflection of the rod. Take: $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm}^{2}$.
7. (a) A close coiled helical spring made of round steel wire is required to carry a load of 600 N for a maximum stress not to exceed $240 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the wire diameter if stiffness of the spring is $10 \mathrm{~N} / \mathrm{mm}$ and maximum diameter of helix is 80 mm . Calculate also the number of turns required in the spring. Neglect the effect due to Wahl's factor.
G for steel $=82 \mathrm{kN} / \mathrm{mm}^{2}$.
(b) A simply supported beam has a width of 100 mm and a depth of 150 mm . It is loaded with uniformly distributed load over the entire span of 3 m . If the permissible shear stress is $3 \mathrm{~N} / \mathrm{mm}^{2}$, find the value of the uniformly distributed load on the beam.
8. (a) In separate experiments Young's Modulus and Rigidity Modulus of a material have been determined as 120 GPa , and 50 GPa respectively. Calculate the Poisson's ratio and Bulk Modulus of the material.
(b) The state of stress at a critical point of a strained solid is given by $\sigma_{x}=70 \mathrm{kN} / \mathrm{mm}^{2}$, $\sigma_{y}=-50 \mathrm{kN} / \mathrm{mm}^{2}$ and $\sigma_{x y}=45 \mathrm{kN} / \mathrm{mm}^{2}$. If the strength of solid in tension, compression, and shear are given as $120 \mathrm{kN} / \mathrm{mm}^{2}, 90 \mathrm{kN} / \mathrm{mm}^{2}$ and $75 \mathrm{kN} / \mathrm{mm}^{2}$ respectively, verify the safety of the component.

