MCA (Revised)

Term-End Examination

June, 2010

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) Estimate the relative error in $z=x-y$ when
$x=0.1234 \times 10^{4}$ and $y=0.1232 \times 10^{4}$ as stored in a system with four-digit mantissa.
(b) Show that the series $e^{x}=1+x+\frac{x^{2}}{2!}+\ldots$. becomes unstable when $x=-10$.
(c) Find the root of the equation $x^{x}+x-4=0$ using the Newton-Raphson method correct to four decimal places.
(d) The observed values of a function are respectively $168,120,72$ and 63 at the four positions $3,7,9$ and 10 of the independent variable. What is the best estimate you can give of the value of the function at the position 6 of the independent variable. Apply Lagrange's formula.
(e) The table gives the distance in nautical miles
of the visible horizon for the given heights
in feet above the earth's surface :

$x=$ height	100	150	200	250	300	350	400
$y=$ distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the value of y when $x=410$ using Newton's Backward Interpolation formula.
(f) Five men in a group of 20 are graduates. If 3 men are picked out of 20 at random (i) what is the probability that all are graduates and (ii) what is the probability of at least one being graduate?
2. (a) Find the root of the equation $x e^{x}=\cos x$ using the secant method correct to four decimal places.
(b) Evaluate $\int_{1}^{2} \log x$ by Trapezoidal rule. 6
(c) A book contains 100 misprints distributed randomly throughout its 100 pages. What is the probability that a page observed at random contains atleast two misprints.
3. (a) Solve the system of equations:

$$
\begin{aligned}
4 x_{1}+x_{2}+x_{3} & =2 \\
x_{1}+5 x_{2}+2 x_{3} & =-6 \\
x_{1}+2 x_{2}+3 x_{3} & =-4
\end{aligned}
$$

Using Jacobi iteration method.

(b) Use Euler method to solve numerically the
initial value problem.
$v^{\prime}=-2 \mathrm{t} v^{2}, v(0)=1$
with $h=0.2$ and 0.1 on the interval $[0,1]$.

OR

A sample of 100 dry battery cells tested to
find the length of life produced the following results :
$\overline{\mathrm{X}}=12$ hours, $\sigma=3$ hours
Assuming the data to be normally distributed, what percentage of battery cells are expected to have life :
(i) More than 15 hours
(ii) Between 10 and 14 hours
$\left[\begin{array}{cccccc}\text { Given } & \text { Z: } & 2.5 & 2 & 1 & 0.67 \\ & \text { Area : } & 0.4938 & 0.4772 & 0.3413 & 0.2487\end{array}\right]$
4. (a) Show that the LU decomposition method $\mathbf{1 0}$
fails to solve the system of equations :
$\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & 2 & 5 \\ 3 & 2 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}2 \\ -3 \\ 6\end{array}\right]$

Exact solution is $x_{1}=1, x_{2}=0, x_{3}=-1$.
OR
Apply Runge-Kutta method to find approximate value of y for $x=0.2$, in steps
of 0.1, if $\frac{\mathrm{d} y}{\mathrm{~d} x}=x+y^{2}$, given that $y=1$
where $x=0$.
P.T.O.
(b) A problem in statistics is given to five students A, B, C, D and E. Their chances of solving it are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$ and $\frac{1}{6}$. What is the probability that the problem will be solved?
5. (a) Perform five iterations of the bisection method to obtain the smallest positive root of the equation $f(x)=x^{3}-5 x+1=0$.
(b) With the help of Newton's forward difference interpolation formula obtain the interpolating polynomial satisfying the data.

x	1	2	3	4
$f(x)$	26	18	4	1

If a point $x=5, f(x)=26$, is added to above data, will the interpolation polynomial change? Explain.
(c) What is a random variable? Write down the expression which define Binomial, Poisson and Normal probability distribution. Give two physical situation illustrating a poisson random variable.

