MCS-033

\mathbf{a}	MCA (Devriced)
2	IVICA (Revised)
0	
2	Term-End Examination
—	Term-End Examination
	June, 2010
	, , , , , , , , , , , , , , , , , , ,

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time	: 2 ho	ours Maximum Marks : 50	Maximum Marks : 50		
Note	: Q qı	uestion no. 1 is compulsory . Attempt any three uestions from the rest.	- ?		
1.	(a)	Find the order and degree, for each of the following recurrence, and determine for each whether it is homogeneous or not : (i) $a_n = 3a_{n-1} + n^2$ (ii) $a_n = a_{n-1}^2 + a_{n-2}a_{n-3}a_{n-4}$	•		
	(b)	Find the complement of the given graph : 3	6		

1

MCS-033

,

P.T.O.

- (c) Build a generating function for the 4 geometric progression $\{ar^n : n \ge 0\}$, i.e, for $\{a, ar, ar^2 \dots \}$.
- (d) Construct a 5 regular graph on 10 vertices. 3

3

(e) Solve the recurrence relation :

 $a_n - 5a_{n-1} + 6a_{n-2} = 0$ where $a_0 = 2$, $a_1 = 5$

(f) Show that the graphs G and G^1 are 4 isomorphic :

- 2. (a) Define the concept of a spanning tree for a 3 given graph G. Give a suitable example to illustrate the concept.
 - (b) Define each of the following concepts 4supported with a suitable example :
 - (i) Edge connectivity
 - (ii) Cut set
 - (iii) Bipartite Graph
 - (iv) Component Graph

MCS-033

2

3.

(a) The nth fibonacci number is defined as 5 follows :

 $f_1 = 1$, $f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ Using induction or otherwise, show that :

£	_	1 + √5	n	$1 - \sqrt{5}$	n
Jn	-	2		2	

- (b) Define the concepts of Eulerian and 3
 Harmiltonian graph supported with an example for each.
- (c) Find the chromatic number of the following **2** graph :

4. (a) Define the concept of a complete graph. 3 Draw complete graph each for the case when number of vertices is given by : n=3, n=4.

3

MCS-033

P.T.O.

(b) Show that the number of r - permutations 5 of n objects, denoted by :

P(n, r) = n!/(n-r)!,

satisfies the recurrence relation :

P(n, r) = P(n-1, r) + rP(n-1, r-1)

- (c) Show that for a subgraph H of a graph G, 2
 Δ(H) ≤ Δ(G), where Δ(P) denotes the maximum vertex degree for a graph P.
- 5. (a) For what values of n is K_n Eulerian. 3
 - (b) Using substitution method, solve the **3** recurrence :

$$a_n = \frac{n-1}{n} a_{n-1} + \frac{1}{n}, n \ge 1 \text{ and } a_0 = 5$$

(c) Verify that the generating function for the 4binomial coefficients :

{C(k, 0), C(k, 1)a, C(k, 2)a², } is $(1 + az)^{k}$.

4