MCA (Revised)

Term-End Examination

June, 2010

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Find the order and degree, for each of the 3 following recurrence, and determine for each whether it is homogeneous or not :
(i) $\mathrm{a}_{\mathrm{n}}=3 a_{\mathrm{n}-1}+\mathrm{n}^{2}$
(ii) $a_{n}=a_{n-1}^{2}+a_{n-2} a_{n-3} a_{n-4}$
(b) Find the complement of the given graph :

(c) Build a generating function for the geometric progression $\left\{\mathrm{ar}^{\mathrm{n}}: \mathrm{n} \geq 0\right\}$, i.e, for $\left\{a, a r, a r^{2} \ldots.\right\}$.
(d) Construct a 5 regular graph on 10 vertices. 3
(e) Solve the recurrence relation :

$$
a_{n}-5 a_{n-1}+6 a_{n-2}=0
$$

$$
\text { where } a_{0}=2, a_{1}=5
$$

(f) Show that the graphs G and G^{1} are 4 isomorphic :

2. (a) Define the concept of a spanning tree for a given graph G . Give a suitable example to illustrate the concept.
(b) Define each of the following concepts 4 supported with a suitable example :
(i) Edge connectivity
(ii) Cut set
(iii) Bipartite Graph
(iv) Component Graph
(c) Find an Eular path in the graph :

3. (a) The $\mathrm{n}^{\text {th }}$ fibonacci number is defined as
follows:

$$
f_{1}=1, f_{2}=1, \text { and } f_{n}=f_{n-1}+f_{n-2}
$$

Using induction or otherwise, show that :

$$
f_{n}=\left[\frac{1+\sqrt{5}}{2}\right]^{n}-\left[\frac{1-\sqrt{5}}{2}\right]^{n}
$$

(b) Define the concepts of Eulerian and Harmiltonian graph supported with an example for each.
(c) Find the chromatic number of the following graph :

4. (a) Define the concept of a complete graph. Draw complete graph each for the case when number of vertices is given by : $n=3, n=4$.
(b) Show that the number of r-permutations 5 of n objects, denoted by :

$$
P(\mathrm{n}, r)=n!/(\mathrm{n}-r)!,
$$

satisfies the recurrence relation :

$$
P(\mathrm{n}, r)=P(\mathrm{n}-1, r)+r P(\mathrm{n}-1, r-1)
$$

(c) Show that for a subgraph H of a graph G,
$\Delta(H) \leq \Delta(G)$, where $\Delta(\mathrm{P})$ denotes the maximum vertex degree for a graph P.
5. (a) For what values of n is K_{n} Eulerian. 3
(b) Using substitution method, solve the 3 recurrence :

$$
a_{n}=\frac{n-1}{n} a_{n-1}+\frac{1}{n}, n \geq 1 \text { and } a_{0}=5
$$

(c) Verify that the generating function for the binomial coefficients :
$\left\{C(k, 0), C(k, 1) a, C(k, 2) a^{2}, \ldots.\right\}$ is $(1+a z)^{k}$.

